Vol. 1 No. 2 (2021): Journal of AI-Assisted Scientific Discovery
Articles

Automating Zero-Downtime Deployments in Kubernetes on Amazon EKS

Babulal Shaik
Cloud Solutions Architect at Amazon Web Services, USA
Karthik Allam
Big Data Infrastructure Engineer, JP Morgan & Chase, USA
Sai Charith Daggupati
Sr. IT BSA (Data Systems), CF Industries
COver

Published 08-10-2021

Keywords

  • Kubernetes,
  • Amazon EKS,
  • DevOps Automation

How to Cite

[1]
Babulal Shaik, Karthik Allam, and Sai Charith Daggupati, “Automating Zero-Downtime Deployments in Kubernetes on Amazon EKS ”, Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, pp. 355–377, Oct. 2021, Accessed: Dec. 24, 2024. [Online]. Available: https://scienceacadpress.com/index.php/jaasd/article/view/217

Abstract

Automating zero-downtime deployments in Kubernetes on Amazon Elastic Kubernetes Service (EKS) enables businesses to deliver new features and updates seamlessly without interrupting user experiences. With its robust orchestration capabilities, Kubernetes empowers organizations to achieve rolling updates and progressive rollouts, reducing risks associated with software releases. By leveraging Amazon EKS, teams can deploy containerized applications on a managed service that simplifies Kubernetes operations, allowing a greater focus on automation and reliability. This abstract explores strategies and best practices for implementing automated, zero-downtime deployments in Kubernetes environments, emphasizing the importance of CI/CD pipelines and tools like Helm, ArgoCD, and Spinnaker. It discusses the role of Kubernetes features like Deployment resources, health checks, and readiness probes in ensuring application stability during updates. Additionally, the paper examines how service meshes like Istio or Linkerd can enhance observability and traffic routing, enabling advanced deployment patterns like blue-green deployments and canary releases. By automating these processes, teams can reduce manual intervention, enhance deployment consistency, and respond quickly to changing business needs. The discussion includes lessons from industry use cases and highlights how teams can overcome challenges like configuration drift, rollback complexities, and scaling under high traffic. Ultimately, this abstract underscores the potential of combining Kubernetes with Amazon EKS to foster a culture of innovation, speed, and resilience in software delivery pipelines, aligning with DevOps and cloud-native best practices.

Downloads

Download data is not yet available.

References

  1. Arundel, J., & Domingus, J. (2019). Cloud Native DevOps with Kubernetes: building, deploying, and scaling modern applications in the Cloud. O'Reilly Media.
  2. Garbarino, E. (2019). Beginning Kubernetes on the Google Cloud Platform: A Guide to Automating Application Deployment, Scaling, and Management. Apress.
  3. Sayfan, G. (2019). Hands-On Microservices with Kubernetes: Build, deploy, and manage scalable microservices on Kubernetes. Packt Publishing Ltd.
  4. Radeck, L. (2020). Automated deployment of machine learning applications to the cloud (Master's thesis).
  5. Gade, K. R. (2017). Integrations: ETL/ELT, Data Integration Challenges, Integration Patterns. Innovative Computer Sciences Journal, 3(1).
  6. Sayfan, G. (2018). Mastering Kubernetes: Master the art of container management by using the power of Kubernetes. Packt Publishing Ltd.
  7. Gade, K. R. (2019). Data Migration Strategies for Large-Scale Projects in the Cloud for Fintech. Innovative Computer Sciences Journal, 5(1).
  8. Khatri, A., & Khatri, V. (2020). Mastering Service Mesh: Enhance, secure, and observe cloud-native applications with Istio, Linkerd, and Consul. Packt Publishing Ltd.
  9. Ward, B., & Ward, B. (2019). SQL Server on Kubernetes. SQL Server 2019 Revealed: Including Big Data Clusters and Machine Learning, 249-295.
  10. Arundel, J., & Domingus, J. (2019). Cloud Native DevOps mit Kubernetes: Bauen, Deployen und Skalieren moderner Anwendungen in der Cloud. dpunkt. Verlag.
  11. Radek, Š. (2020). Nepřetržitá integrace a nasazení aplikací s technologií Kubernetes (Bachelor's thesis, České vysoké učení technické v Praze. Vypočetní a informační centrum.).
  12. Katari, A. Conflict Resolution Strategies in Financial Data Replication Systems.
  13. Kuepper, R. (2020). Hands-On Swift 5 Microservices Development: Build microservices for mobile and web applications using Swift 5 and Vapor 4. Packt Publishing Ltd.
  14. Diniz, H. F. F. D. S. (2020). Multi-Concession Cloud-Based Toll Collection and Validation System (Doctoral dissertation).
  15. Mulligan, D. (2020). Results tracker app and deployment on EKS (Elastic Kubernetes Service).
  16. Thumburu, S. K. R. (2020). Enhancing Data Compliance in EDI Transactions. Innovative Computer Sciences Journal, 6(1).
  17. Thumburu, S. K. R. (2020). Interfacing Legacy Systems with Modern EDI Solutions: Strategies and Techniques. MZ Computing Journal, 1(1).
  18. Gade, K. R. (2020). Data Mesh Architecture: A Scalable and Resilient Approach to Data Management. Innovative Computer Sciences Journal, 6(1).
  19. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative Computer Sciences Journal, 4(1).
  20. Katari, A. Conflict Resolution Strategies in Financial Data Replication Systems.
  21. Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive Strategies for Secure Online Account Opening.
  22. Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App Design and Functionality to Boost User Engagement and Satisfaction.
  23. Gade, K. R. (2017). Migrations: Challenges and Best Practices for Migrating Legacy Systems to Cloud-Based Platforms. Innovative Computer Sciences Journal, 3(1).
  24. Thumburu, S. K. R. (2020). Exploring the Impact of JSON and XML on EDI Data Formats. Innovative Computer Sciences Journal, 6(1).