Published 24-11-2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
Abstract
With rapid technological advancements, customer experience is no longer maintained by the traditional RATER service pillars (responsiveness, assurance, tangibility, empathy, and reliability). Instead, AI-based tools have proven to simplify the experience of consumers via automation services. New services have evolved with multitasking abilities that corporations have begun using to provide customer service solutions via interactional chatbots and virtual assistants. The ones that can multiskill processes of data retrieval and answer integration would imply less compromise for customer service representatives. One dominant solution maker that processes this prominent software offers next-week turnaround services on training call center automation services using bank chat logs with unlimited transactions in corporate machine learning expertise and provides a leading unique edge over all of its competitors. Hence, this paper contributes to providing insight into the significant situation of AI reception in customer service strategies and an overview of the blazing pace of customer service in the banking industry.
Downloads
References
- Tamanampudi, Venkata Mohit. "NLP-Powered ChatOps: Automating DevOps Collaboration Using Natural Language Processing for Real-Time Incident Resolution." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 530-567.
- Sangaraju, Varun Varma, and Kathleen Hargiss. "Zero trust security and multifactor authentication in fog computing environment." Available at SSRN 4472055.
- S. Kumari, “Kanban and Agile for AI-Powered Product Management in Cloud-Native Platforms: Improving Workflow Efficiency Through Machine Learning-Driven Decision Support Systems”, Distrib Learn Broad Appl Sci Res, vol. 5, pp. 867–885, Aug. 2019
- Pal, Dheeraj Kumar Dukhiram, et al. "Implementing TOGAF for Large-Scale Healthcare Systems Integration." Internet of Things and Edge Computing Journal 2.1 (2022): 55-102.
- Zhu, Yue, and Johnathan Crowell. "Systematic Review of Advancing Machine Learning Through Cross-Domain Analysis of Unlabeled Data." Journal of Science & Technology 4.1 (2023): 136-155.
- J. Singh, “The Future of Autonomous Driving: Vision-Based Systems vs. LiDAR and the Benefits of Combining Both for Fully Autonomous Vehicles ”, J. of Artificial Int. Research and App., vol. 1, no. 2, pp. 333–376, Jul. 2021
- Gadhiraju, Asha. "Improving Hemodialysis Quality at DaVita: Leveraging Predictive Analytics and Real-Time Monitoring to Reduce Complications and Personalize Patient Care." Journal of AI in Healthcare and Medicine 1.1 (2021): 77-116.
- Gadhiraju, Asha. "Empowering Dialysis Care: AI-Driven Decision Support Systems for Personalized Treatment Plans and Improved Patient Outcomes." Journal of Machine Learning for Healthcare Decision Support 2.1 (2022): 309-350.
- Tamanampudi, Venkata Mohit. "Automating CI/CD Pipelines with Machine Learning Algorithms: Optimizing Build and Deployment Processes in DevOps Ecosystems." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 810-849.
- J. Singh, “Understanding Retrieval-Augmented Generation (RAG) Models in AI: A Deep Dive into the Fusion of Neural Networks and External Databases for Enhanced AI Performance”, J. of Art. Int. Research, vol. 2, no. 2, pp. 258–275, Jul. 2022
- S. Kumari, “Cloud Transformation and Cybersecurity: Using AI for Securing Data Migration and Optimizing Cloud Operations in Agile Environments”, J. Sci. Tech., vol. 1, no. 1, pp. 791–808, Oct. 2020.
- Sangaraju, Varun Varma, and Senthilkumar Rajagopal. "Applications of Computational Models in OCD." In Nutrition and Obsessive-Compulsive Disorder, pp. 26-35. CRC Press.
- Tamanampudi, Venkata Mohit. "A Data-Driven Approach to Incident Management: Enhancing DevOps Operations with Machine Learning-Based Root Cause Analysis." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 419-466.