Published 18-10-2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
Abstract
Credit bureau reports and scores are used together to determine creditworthiness, and it remains essential for the credit bureaus and credit scoring companies to make sure that the information maintained on behalf of creditors is accurate, up-to-date, and serves the financial interests of the consumer. Today, a daily technological leasing has intensified the way we live and deal with businesses, especially financial institutions such as banks. Financial industry institutions must adopt solutions that offer efficient and quick credit monitoring to have a competitive effect in today's financial sector. As a matter of fact, different research in credit management or monitoring has attracted many researchers and practitioners because of its significance and challenges. On one hand, the invention of the personal computer and the advent of the internet up to recent times have transformed personal computing; therefore, these transformations have impacts on every area of financial services. There are three main reasons why banks should upgrade their ability to utilize personal computers and software technology to control the provision of credit. First, technological improvements can generate significant reductions in approval times. Faster decision processing can lead to improved customer satisfaction. Credit is the core of banking; if there is a faster credit decision, customers will receive credit quickly, effectively, and efficiently. Customers whom banks are competing for will be proud to deal with their well-satisfied bank.
Downloads
References
- Tamanampudi, Venkata Mohit. "NLP-Powered ChatOps: Automating DevOps Collaboration Using Natural Language Processing for Real-Time Incident Resolution." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 530-567.
- Sangaraju, Varun Varma, and Kathleen Hargiss. "Zero trust security and multifactor authentication in fog computing environment." Available at SSRN 4472055.
- S. Kumari, “Kanban and Agile for AI-Powered Product Management in Cloud-Native Platforms: Improving Workflow Efficiency Through Machine Learning-Driven Decision Support Systems”, Distrib Learn Broad Appl Sci Res, vol. 5, pp. 867–885, Aug. 2019
- Pal, Dheeraj Kumar Dukhiram, et al. "Implementing TOGAF for Large-Scale Healthcare Systems Integration." Internet of Things and Edge Computing Journal 2.1 (2022): 55-102.
- Zhu, Yue, and Johnathan Crowell. "Systematic Review of Advancing Machine Learning Through Cross-Domain Analysis of Unlabeled Data." Journal of Science & Technology 4.1 (2023): 136-155.
- J. Singh, “The Future of Autonomous Driving: Vision-Based Systems vs. LiDAR and the Benefits of Combining Both for Fully Autonomous Vehicles ”, J. of Artificial Int. Research and App., vol. 1, no. 2, pp. 333–376, Jul. 2021
- Gadhiraju, Asha. "Improving Hemodialysis Quality at DaVita: Leveraging Predictive Analytics and Real-Time Monitoring to Reduce Complications and Personalize Patient Care." Journal of AI in Healthcare and Medicine 1.1 (2021): 77-116.
- Gadhiraju, Asha. "Empowering Dialysis Care: AI-Driven Decision Support Systems for Personalized Treatment Plans and Improved Patient Outcomes." Journal of Machine Learning for Healthcare Decision Support 2.1 (2022): 309-350.
- Tamanampudi, Venkata Mohit. "Automating CI/CD Pipelines with Machine Learning Algorithms: Optimizing Build and Deployment Processes in DevOps Ecosystems." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 810-849.
- J. Singh, “Understanding Retrieval-Augmented Generation (RAG) Models in AI: A Deep Dive into the Fusion of Neural Networks and External Databases for Enhanced AI Performance”, J. of Art. Int. Research, vol. 2, no. 2, pp. 258–275, Jul. 2022
- S. Kumari, “Cloud Transformation and Cybersecurity: Using AI for Securing Data Migration and Optimizing Cloud Operations in Agile Environments”, J. Sci. Tech., vol. 1, no. 1, pp. 791–808, Oct. 2020.
- Sangaraju, Varun Varma, and Senthilkumar Rajagopal. "Applications of Computational Models in OCD." In Nutrition and Obsessive-Compulsive Disorder, pp. 26-35. CRC Press.
- Tamanampudi, Venkata Mohit. "A Data-Driven Approach to Incident Management: Enhancing DevOps Operations with Machine Learning-Based Root Cause Analysis." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 419-466.