Vol. 4 No. 2 (2024): Journal of AI-Assisted Scientific Discovery
Articles

The Application of Machine Learning in Improving Inventory Management in U.S. Mobile Device Manufacturing

Dr. In-Soo Jung
Professor of Automotive Engineering, Dong-A University, South Korea
Cover

Published 09-09-2024

Keywords

  • Inventory Management,
  • Mobile Device Manufacturing

How to Cite

[1]
Dr. In-Soo Jung, “The Application of Machine Learning in Improving Inventory Management in U.S. Mobile Device Manufacturing”, Journal of AI-Assisted Scientific Discovery, vol. 4, no. 2, pp. 177–188, Sep. 2024, Accessed: Nov. 21, 2024. [Online]. Available: https://scienceacadpress.com/index.php/jaasd/article/view/156

Abstract

Inventory management in manufacturing industries is a critical aspect that significantly impacts operational efficiency. Effective inventory management aims to maximize service levels while minimizing holding costs, as an unbalanced inventory system can lead to production stoppages, back-ordered demands, lost sales, and additional expenses [1]. The historical context of inventory management evolution highlights the shift towards data-driven approaches, particularly the application of machine learning algorithms to solve inventory-related challenges in data-rich environments [2]. This section sets the stage for the subsequent discussions by providing an overview of the key principles and practices involved in managing inventory within manufacturing settings, emphasizing the importance of leveraging new technologies to improve efficiency in supply chains.

Downloads

Download data is not yet available.

References

  1. Pelluru, Karthik. "Integrate security practices and compliance requirements into DevOps processes." MZ Computing Journal 2.2 (2021): 1-19.
  2. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence and Blockchain Integration for Enhanced Security in Insurance: Techniques, Models, and Real-World Applications." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 187-224.
  3. Singh, Puneet. "Transforming Healthcare through AI: Enhancing Patient Outcomes and Bridging Accessibility Gaps." Journal of Artificial Intelligence Research 4.1 (2024): 220-232.
  4. Rambabu, Venkatesha Prabhu, Chandrashekar Althati, and Amsa Selvaraj. "ETL vs. ELT: Optimizing Data Integration for Retail and Insurance Analytics." Journal of Computational Intelligence and Robotics 3.1 (2023): 37-84.
  5. Krothapalli, Bhavani, Chandan Jnana Murthy, and Jim Todd Sunder Singh. "Cross-Industry Enterprise Integration: Best Practices from Insurance and Retail." Journal of Science & Technology 3.2 (2022): 46-97.
  6. Amsa Selvaraj, Priya Ranjan Parida, and Chandan Jnana Murthy, “Enhancing Automotive Safety and Efficiency through AI/ML-Driven Telematics Solutions”, J. Computational Intel. & Robotics, vol. 3, no. 2, pp. 82–122, Oct. 2023.
  7. Pradeep Manivannan, Sharmila Ramasundaram Sudharsanam, and Jim Todd Sunder Singh, “Leveraging Integrated Customer Data Platforms and MarTech for Seamless and Personalized Customer Journey Optimization”, J. of Artificial Int. Research and App., vol. 1, no. 1, pp. 139–174, Mar. 2021
  8. Jasrotia, Manojdeep Singh. "Unlocking Efficiency: A Comprehensive Approach to Lean In-Plant Logistics." International Journal of Science and Research (IJSR) 13.3 (2024): 1579-1587.
  9. Gayam, Swaroop Reddy. "AI for Supply Chain Visibility in E-Commerce: Techniques for Real-Time Tracking, Inventory Management, and Demand Forecasting." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 218-251.
  10. Nimmagadda, Venkata Siva Prakash. "AI-Powered Predictive Analytics for Credit Risk Assessment in Finance: Advanced Techniques, Models, and Real-World Applications." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 251-286.
  11. Putha, Sudharshan. "AI-Driven Decision Support Systems for Insurance Policy Management." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 326-359.
  12. Sahu, Mohit Kumar. "Machine Learning Algorithms for Automated Underwriting in Insurance: Techniques, Tools, and Real-World Applications." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 286-326.
  13. Kasaraneni, Bhavani Prasad. "Advanced AI Techniques for Fraud Detection in Travel Insurance: Models, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 455-513.
  14. Kondapaka, Krishna Kanth. "Advanced AI Models for Portfolio Management and Optimization in Finance: Techniques, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 560-597.
  15. Kasaraneni, Ramana Kumar. "AI-Enhanced Claims Processing in Insurance: Automation and Efficiency." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 669-705.
  16. Pattyam, Sandeep Pushyamitra. "Advanced AI Algorithms for Predictive Analytics: Techniques and Applications in Real-Time Data Processing and Decision Making." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 359-384.
  17. Kuna, Siva Sarana. "AI-Powered Customer Service Solutions in Insurance: Techniques, Tools, and Best Practices." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 588-629.
  18. Gayam, Swaroop Reddy. "Artificial Intelligence for Financial Fraud Detection: Advanced Techniques for Anomaly Detection, Pattern Recognition, and Risk Mitigation." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 377-412.
  19. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Automated Loan Underwriting in Banking: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 174-218.
  20. Putha, Sudharshan. "AI-Driven Molecular Docking Simulations: Enhancing the Precision of Drug-Target Interactions in Computational Chemistry." African Journal of Artificial Intelligence and Sustainable Development 1.2 (2021): 260-300.
  21. Sahu, Mohit Kumar. "Machine Learning Algorithms for Enhancing Supplier Relationship Management in Retail: Techniques, Tools, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 6 (2020): 227-271.
  22. Kasaraneni, Bhavani Prasad. "Advanced AI Techniques for Predictive Maintenance in Health Insurance: Models, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 513-546.
  23. Kondapaka, Krishna Kanth. "Advanced AI Models for Retail Supply Chain Network Design and Optimization: Techniques, Applications, and Real-World Case Studies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 598-636.
  24. Kasaraneni, Ramana Kumar. "AI-Enhanced Clinical Trial Design: Streamlining Patient Recruitment, Monitoring, and Outcome Prediction." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 706-746.
  25. Pattyam, Sandeep Pushyamitra. "AI in Data Science for Financial Services: Techniques for Fraud Detection, Risk Management, and Investment Strategies." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 385-416.
  26. Kuna, Siva Sarana. "AI-Powered Techniques for Claims Triage in Property Insurance: Models, Tools, and Real-World Applications." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 208-245.
  27. Pradeep Manivannan, Sharmila Ramasundaram Sudharsanam, and Jim Todd Sunder Singh, “Trends, Future and Potential of Omnichannel Marketing through Integrated MarTech Stacks”, J. Sci. Tech., vol. 2, no. 2, pp. 269–300, Jun. 2021
  28. Selvaraj, Akila, Deepak Venkatachalam, and Jim Todd Sunder Singh. "Advanced Telematics and Real-Time Data Analytics in the Automotive Industry: Leveraging Edge Computing for Predictive Vehicle Maintenance and Performance Optimization." Journal of Artificial Intelligence Research and Applications 3.1 (2023): 581-622.
  29. Selvaraj, Amsa, Debasish Paul, and Rajalakshmi Soundarapandiyan. "Synthetic Data for Customer Behavior Analysis in Financial Services: Leveraging AI/ML to Model and Predict Consumer Financial Actions." Journal of Artificial Intelligence Research 2.2 (2022): 218-258.
  30. Paul, Debasish, Rajalakshmi Soundarapandiyan, and Gowrisankar Krishnamoorthy. "Security-First Approaches to CI/CD in Cloud-Computing Platforms: Enhancing DevSecOps Practices." Australian Journal of Machine Learning Research & Applications 1.1 (2021): 184-225.
  31. Venkatachalam, Deepak, Jeevan Sreeram, and Rajalakshmi Soundarapandiyan. "Large Language Models in Retail: Best Practices for Training, Personalization, and Real-Time Customer Interaction in E-Commerce Platforms." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 539-592.
  32. Namperumal, Gunaseelan, Rajalakshmi Soundarapandiyan, and Priya Ranjan Parida. "Cloud-Driven Human Capital Management Solutions: A Comprehensive Analysis of Scalability, Security, and Compliance in Global Enterprises." Australian Journal of Machine Learning Research & Applications 2.2 (2022): 501-549.
  33. Kurkute, Mahadu Vinayak, Gunaseelan Namperumal, and Akila Selvaraj. "Scalable Development and Deployment of LLMs in Manufacturing: Leveraging AI to Enhance Predictive Maintenance, Quality Control, and Process Automation." Australian Journal of Machine Learning Research & Applications 3.2 (2023): 381-430.
  34. Soundarapandiyan, Rajalakshmi, Deepak Venkatachalam, and Akila Selvaraj. "Real-Time Data Analytics in Connected Vehicles: Enhancing Telematics Systems for Autonomous Driving and Intelligent Transportation Systems." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 420-461.
  35. Sivathapandi, Praveen, Venkatesha Prabhu Rambabu, and Yeswanth Surampudi. "Advanced CI/CD Pipelines in Multi-Tenant Cloud Platforms: Strategies for Secure and Efficient Deployment." Journal of Science & Technology 2.4 (2021): 212-252.
  36. Sudharsanam, Sharmila Ramasundaram, Gunaseelan Namperumal, and Akila Selvaraj. "Integrating AI/ML Workloads with Serverless Cloud Computing: Optimizing Cost and Performance for Dynamic, Event-Driven Applications." Journal of Science & Technology 3.3 (2022): 286-325.