Vol. 4 No. 1 (2024): Journal of AI-Assisted Scientific Discovery
Articles

Deep Learning Applications in Data Science: Investigating applications of deep learning techniques such as neural networks and convolutional networks in data science tasks

Dr. Beatrice Kern
Professor of Information Systems, University of Applied Sciences Potsdam, Germany
Cover

Published 20-03-2024

Keywords

  • Deep Learning,
  • Neural Networks

How to Cite

[1]
Dr. Beatrice Kern, “Deep Learning Applications in Data Science: Investigating applications of deep learning techniques such as neural networks and convolutional networks in data science tasks”, Journal of AI-Assisted Scientific Discovery, vol. 4, no. 1, pp. 270–278, Mar. 2024, Accessed: Jan. 18, 2025. [Online]. Available: https://scienceacadpress.com/index.php/jaasd/article/view/126

Abstract

Deep learning has revolutionized the field of data science by providing powerful tools to extract valuable insights from complex data. This paper explores the wide-ranging applications of deep learning techniques, such as neural networks and convolutional networks, in various data science tasks. We examine how these techniques are used to tackle challenges in data preprocessing, feature extraction, and model training. Furthermore, we investigate the role of deep learning in predictive analytics, anomaly detection, and natural language processing. Through a comprehensive review of recent literature, we highlight the effectiveness of deep learning in handling large datasets and capturing intricate patterns that are often difficult to detect with traditional machine learning methods. Our analysis reveals the significant impact of deep learning on advancing data science and offers insights into future research directions in this rapidly evolving field.

Downloads

Download data is not yet available.

References

  1. Sadhu, Ashok Kumar Reddy. "Enhancing Healthcare Data Security and User Convenience: An Exploration of Integrated Single Sign-On (SSO) and OAuth for Secure Patient Data Access within AWS GovCloud Environments." Hong Kong Journal of AI and Medicine 3.1 (2023): 100-116.
  2. Tatineni, Sumanth. "Applying DevOps Practices for Quality and Reliability Improvement in Cloud-Based Systems." Technix international journal for engineering research (TIJER)10.11 (2023): 374-380.
  3. Perumalsamy, Jegatheeswari, Manish Tomar, and Selvakumar Venkatasubbu. "Advanced Analytics in Actuarial Science: Leveraging Data for Innovative Product Development in Insurance." Journal of Science & Technology 4.3 (2023): 36-72.
  4. Selvaraj, Amsa, Munivel Devan, and Kumaran Thirunavukkarasu. "AI-Driven Approaches for Test Data Generation in FinTech Applications: Enhancing Software Quality and Reliability." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 397-429.
  5. Katari, Monish, Selvakumar Venkatasubbu, and Gowrisankar Krishnamoorthy. "Integration of Artificial Intelligence for Real-Time Fault Detection in Semiconductor Packaging." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.3 (2023): 473-495.
  6. Makka, Arpan Khoresh Amit. “Integrating SAP Basis and Security: Enhancing Data Privacy and Communications Network Security”. Asian Journal of Multidisciplinary Research & Review, vol. 1, no. 2, Nov. 2020, pp. 131-69, https://ajmrr.org/journal/article/view/187.
  7. Tatineni, Sumanth, and Naga Vikas Chakilam. "Integrating Artificial Intelligence with DevOps for Intelligent Infrastructure Management: Optimizing Resource Allocation and Performance in Cloud-Native Applications." Journal of Bioinformatics and Artificial Intelligence 4.1 (2024): 109-142.
  8. Prakash, Sanjeev, et al. "Achieving regulatory compliance in cloud computing through ML." AIJMR-Advanced International Journal of Multidisciplinary Research 2.2 (2024).
  9. Reddy, Sai Ganesh, et al. "Harnessing the Power of Generative Artificial Intelligence for Dynamic Content Personalization in Customer Relationship Management Systems: A Data-Driven Framework for Optimizing Customer Engagement and Experience." Journal of AI-Assisted Scientific Discovery 3.2 (2023): 379-395.
  10. Makka, A. K. A. “Implementing SAP on Cloud: Leveraging Security and Privacy Technologies for Seamless Data Integration and Protection”. Internet of Things and Edge Computing Journal, vol. 3, no. 1, June 2023, pp. 62-100, https://thesciencebrigade.com/iotecj/article/view/286.
  11. Shanmugam, Lavanya, Ravish Tillu, and Suhas Jangoan. "Privacy-Preserving AI/ML Application Architectures: Techniques, Trade-offs, and Case Studies." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.2 (2023): 398-420.
  12. Perumalsamy, Jegatheeswari, Manish Tomar, and Selvakumar Venkatasubbu. "Advanced Analytics in Actuarial Science: Leveraging Data for Innovative Product Development in Insurance." Journal of Science & Technology 4.3 (2023): 36-72.