Ensemble Learning Methods and AI-Driven Predictive Models: Fusion of Models for Enhanced Change Management and Performance Optimization
Published 03-01-2024
Keywords
- Ensemble Learning,
- Bagging
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
Abstract
Ensemble learning methods have become critical in improving the predictive performance of machine learning models, particularly in AI-driven predictive frameworks for Change Management within dynamic project environments. By fusing multiple model outputs, ensemble methods achieve higher accuracy and robustness, helping reduce overfitting and driving better decision-making during change adaptation. This paper provides a comprehensive review of ensemble learning methods, focusing on their principles, types, and applications. We discuss various techniques, including bagging, boosting, and stacking, and analyze their role in optimizing project management through enhanced predictive performance. Furthermore, we explore the importance of model diversity and its impact on ensemble effectiveness. A case study illustrates how these methods can be applied to real-world change management scenarios, improving project outcomes through precise predictive insights.
Downloads
References
- Sadhu, Ashok Kumar Reddy, et al. "Enhancing Customer Service Automation and User Satisfaction: An Exploration of AI-powered Chatbot Implementation within Customer Relationship Management Systems." Journal of Computational Intelligence and Robotics 4.1 (2024): 103-123.
- Tatineni, Sumanth. "Applying DevOps Practices for Quality and Reliability Improvement in Cloud-Based Systems." Technix international journal for engineering research (TIJER)10.11 (2023): 374-380.
- Perumalsamy, Jegatheeswari, Chandrashekar Althati, and Muthukrishnan Muthusubramanian. "Leveraging AI for Mortality Risk Prediction in Life Insurance: Techniques, Models, and Real-World Applications." Journal of Artificial Intelligence Research 3.1 (2023): 38-70.
- Devan, Munivel, Lavanya Shanmugam, and Chandrashekar Althati. "Overcoming Data Migration Challenges to Cloud Using AI and Machine Learning: Techniques, Tools, and Best Practices." Australian Journal of Machine Learning Research & Applications 1.2 (2021): 1-39.
- Selvaraj, Amsa, Chandrashekar Althati, and Jegatheeswari Perumalsamy. "Machine Learning Models for Intelligent Test Data Generation in Financial Technologies: Techniques, Tools, and Case Studies." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 363-397.
- Katari, Monish, Selvakumar Venkatasubbu, and Gowrisankar Krishnamoorthy. "Integration of Artificial Intelligence for Real-Time Fault Detection in Semiconductor Packaging." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.3 (2023): 473-495.
- Tatineni, Sumanth, and Naga Vikas Chakilam. "Integrating Artificial Intelligence with DevOps for Intelligent Infrastructure Management: Optimizing Resource Allocation and Performance in Cloud-Native Applications." Journal of Bioinformatics and Artificial Intelligence 4.1 (2024): 109-142.
- Prakash, Sanjeev, et al. "Achieving regulatory compliance in cloud computing through ML." AIJMR-Advanced International Journal of Multidisciplinary Research 2.2 (2024).
- Makka, A. K. A. “Optimizing SAP Basis Administration for Advanced Computer Architectures and High-Performance Data Centers”. Journal of Science & Technology, vol. 1, no. 1, Oct. 2020, pp. 242-279, https://thesciencebrigade.com/jst/article/view/282.
- Peddisetty, Namratha, and Amith Kumar Reddy. "Leveraging Artificial Intelligence for Predictive Change Management in Information Systems Projects." Distributed Learning and Broad Applications in Scientific Research 10 (2024): 88-94.
- Venkataramanan, Srinivasan, et al. "Leveraging Artificial Intelligence for Enhanced Sales Forecasting Accuracy: A Review of AI-Driven Techniques and Practical Applications in Customer Relationship Management Systems." Australian Journal of Machine Learning Research & Applications 4.1 (2024): 267-287.
- Althati, Chandrashekar, Jesu Narkarunai Arasu Malaiyappan, and Lavanya Shanmugam. "AI-Driven Analytics: Transforming Data Platforms for Real-Time Decision Making." Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023 3.1 (2024): 392-402.
- Venkatasubbu, Selvakumar, and Gowrisankar Krishnamoorthy. "Ethical Considerations in AI Addressing Bias and Fairness in Machine Learning Models." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 1.1 (2022): 130-138.