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Abstract:  

Instance normalization (IN) has emerged as a powerful tool in the realm of deep neural 

networks (DNNs), offering a means to stabilize and accelerate training. Unlike batch 

normalization, which computes normalization statistics over a batch of samples, IN 

normalizes each sample individually, making it suitable for style transfer, super-resolution, 

and other tasks where batch statistics might not be ideal. This paper provides an in-depth 

analysis of various IN techniques, including their theoretical foundations, implementation 

details, and comparative performance evaluations. Additionally, it explores the wide range of 

applications where IN has shown remarkable effectiveness, such as image generation, image-

to-image translation, and domain adaptation. By shedding light on the nuances of IN, this 

paper aims to deepen the understanding of normalization techniques in DNNs and inspire 

further research in this exciting field. 
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1. Introduction 

Deep neural networks (DNNs) have revolutionized the field of artificial intelligence, 

achieving remarkable success in various tasks such as image recognition, natural language 

processing, and game playing. However, training DNNs is often challenging due to issues 
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like vanishing gradients, which can hinder convergence and slow down training. 

Normalization techniques have been proposed to address these challenges by normalizing the 

inputs to each layer of a neural network. Batch normalization (BN) was one of the early 

techniques that significantly improved the training of deep networks by normalizing the 

activations using statistics computed over the entire mini-batch. However, BN has limitations, 

particularly when the batch size is small or when dealing with tasks where batch statistics are 

not representative of the entire dataset. 

Instance normalization (IN) was introduced as an alternative to BN, aiming to normalize the 

activations of each sample individually. Unlike BN, which computes the mean and variance 

over the entire mini-batch, IN computes them per sample along each channel. This makes IN 

suitable for tasks such as style transfer, super-resolution, and image-to-image translation, 

where batch statistics might not be ideal. IN has shown promising results in stabilizing and 

accelerating the training of DNNs, leading to improved performance in various applications. 

This paper provides a comprehensive overview of instance normalization techniques and 

their applications in deep learning. We begin by discussing the background and motivation 

behind normalization techniques in DNNs. We then provide an overview of different 

normalization techniques, including batch normalization, layer normalization, and group 

normalization, highlighting their strengths and limitations. Next, we delve into the details of 

instance normalization, discussing its mathematical formulation, implementation 

considerations, and comparative performance evaluations. We also explore different variants 

of instance normalization, such as conditional instance normalization (CIN) and adaptive 

instance normalization (AdaIN), and discuss their specific applications and benefits. 

 

2. Normalization Techniques in Deep Neural Networks 

Normalization techniques play a crucial role in the training of deep neural networks (DNNs) 

by addressing issues such as internal covariate shift and vanishing gradients. These 

techniques aim to normalize the activations of neurons, making the training process more 

stable and efficient. Several normalization techniques have been proposed in the literature, 

each with its own strengths and limitations. In this section, we provide an overview of some 

of the most commonly used normalization techniques in DNNs. 
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Batch Normalization (BN): Batch normalization (BN) is one of the pioneering normalization 

techniques proposed for DNNs. It normalizes the activations of each layer using the mean and 

variance computed over the entire mini-batch. By doing so, BN reduces internal covariate shift 

and helps stabilize the training process. Moreover, BN has been shown to act as a regularizer, 

reducing the need for other regularization techniques such as dropout. 

Despite its effectiveness, BN has some limitations. It requires the selection of an appropriate 

batch size, and it may not perform well with small batch sizes. Moreover, BN is not well-

suited for tasks where batch statistics are not representative of the entire dataset, such as in 

style transfer or super-resolution. 

Layer Normalization (LN): Layer normalization (LN) is another normalization technique that 

normalizes the activations of each layer along the feature dimension. Unlike BN, which 

computes normalization statistics over the entire mini-batch, LN computes them per layer. 

This makes LN more suitable for tasks where the batch size is small or where batch statistics 

are not ideal. 

LN has been shown to perform well in certain scenarios, such as in recurrent neural networks 

(RNNs), where maintaining the hidden state's mean and variance over time is crucial. 

However, LN may not perform as well as BN in tasks where the normalization statistics need 

to be learned dynamically. 

Instance Normalization (IN): Instance normalization (IN) is a variant of normalization that 

normalizes the activations of each sample individually. IN computes the mean and variance 

per sample along each channel, making it suitable for tasks where batch statistics are not ideal. 

IN has been shown to be effective in tasks such as style transfer, super-resolution, and image-

to-image translation. 

IN has several advantages over BN and LN. It does not require the selection of an appropriate 

batch size and can adapt to different tasks and datasets. Moreover, IN has been shown to 

accelerate the training process and improve the generalization performance of DNNs. 

Group Normalization (GN): Group normalization (GN) is a normalization technique that 

divides the channels of each layer into groups and computes normalization statistics per 

group. GN has been shown to perform well in scenarios where the batch size is small or where 

the normalization statistics need to be computed per group. 
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3. Instance Normalization Techniques 

Instance normalization (IN) is a normalization technique that normalizes the activations of 

each sample individually. Unlike batch normalization (BN), which computes normalization 

statistics over the entire mini-batch, IN computes them per sample along each channel. This 

makes IN particularly suitable for tasks where batch statistics are not ideal, such as in style 

transfer, super-resolution, and image-to-image translation. In this section, we discuss various 

IN techniques, including their formulations, implementation details, and applications. 

3.1 Instance Normalization (IN): Instance normalization (IN) is the basic form of instance 

normalization, where the mean and variance are computed per sample along each channel. 

Given an input tensor XX of shape (N,C,H,W)(N,C,H,W), where NN is the batch size, CC is 

the number of channels, HH is the height, and WW is the width, the IN operation can be 

defined as: 

IN(X)=X−µσ2+ϵ⊙γ+βIN(X)=σ2+ϵ 

X−µ⊙γ+β 

where µµ and σ2σ2 are the mean and variance of XX computed along each channel and ϵϵ is 

a small constant to prevent division by zero. γγ and ββ are learnable parameters that scale 

and shift the normalized tensor, respectively. 

IN has been shown to accelerate the training of deep neural networks and improve their 

generalization performance. It has been widely used in tasks such as style transfer, where 

preserving the style of an image while changing its content is crucial. 

3.2 Conditional Instance Normalization (CIN): Conditional instance normalization (CIN) is 

an extension of IN that introduces conditional parameters to control the normalization 

process. This allows for more flexibility in the normalization process, enabling the network to 

learn different normalization behaviors for different inputs. 

The CIN operation can be defined as: 

CIN(X,γ,β)=X−µσ2+ϵ⊙γ+βCIN(X,γ,β)=σ2+ϵ 
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X−µ⊙γ+β 

where γγ and ββ are conditional parameters that control the normalization process. By 

learning different γγ and ββ parameters for different inputs, CIN can adapt to different styles 

or attributes in the input data, making it particularly useful in tasks such as image-to-image 

translation. 

3.3 Adaptive Instance Normalization (AdaIN): Adaptive instance normalization (AdaIN) is 

another extension of IN that introduces style parameters to control the normalization process. 

AdaIN allows for the transfer of style from one image to another by matching their mean and 

variance along each channel. 

The AdaIN operation can be defined as: 

AdaIN(X,Y)=σ(Y)(X−µ(X)σ2(X)+ϵ)+µ(Y)AdaIN(X,Y)=σ(Y)(σ2(X)+ϵ 

X−µ(X))+µ(Y) 

where XX is the content input and YY is the style input. AdaIN computes the mean and 

variance of XX and applies them to the style of YY, effectively transferring the style of YY to 

XX. AdaIN has been widely used in style transfer and image manipulation tasks, where 

controlling the style of an image is essential. 

 

4. Theoretical Foundations of Instance Normalization 

Instance normalization (IN) has gained popularity in the field of deep learning due to its 

effectiveness in stabilizing and accelerating the training of deep neural networks (DNNs). In 

this section, we discuss the theoretical foundations of IN, including its mathematical 

formulation and its comparison with other normalization techniques. 

4.1 Mathematical Formulation: The mathematical formulation of instance normalization can 

be understood by considering its effect on the input tensor XX of shape (N,C,H,W)(N,C,H,W), 

where NN is the batch size, CC is the number of channels, HH is the height, and WW is the 

width. The IN operation can be defined as: 

IN(X)=X−µσ2+ϵ⊙γ+βIN(X)=σ2+ϵ 
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X−µ⊙γ+β 

where µµ and σ2σ2 are the mean and variance of XX computed per sample along each channel, 

ϵϵ is a small constant to prevent division by zero, γγ is a learnable scale parameter, and ββ is 

a learnable shift parameter. 

The IN operation normalizes the activations of each sample individually, making it suitable 

for tasks where batch statistics are not ideal. By normalizing each sample along each channel, 

IN helps stabilize the training process and improve the generalization performance of DNNs. 

4.2 Comparison with Other Normalization Techniques: IN differs from other normalization 

techniques, such as batch normalization (BN) and layer normalization (LN), in how it 

computes normalization statistics. While BN computes the mean and variance over the entire 

mini-batch, and LN computes them per layer, IN computes them per sample along each 

channel. 

This difference is particularly significant in tasks where batch statistics are not ideal, such as 

in style transfer or super-resolution. IN allows the network to adapt to different samples and 

learn different normalization behaviors for different inputs, leading to improved performance 

in such tasks. 

Moreover, IN has been shown to accelerate the training of DNNs by reducing internal 

covariate shift and improving the conditioning of the optimization problem. By normalizing 

each sample individually, IN helps ensure that the activations of each sample are centered 

around zero and have unit variance, making the optimization process more stable and 

efficient. 

 

5. Implementation Details 

Implementing instance normalization (IN) in deep neural networks (DNNs) requires careful 

consideration of several factors, including network architectures, training considerations, and 

computational efficiency. In this section, we discuss the implementation details of IN and how 

it can be effectively incorporated into DNNs. 
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5.1 Network Architectures: IN can be easily incorporated into various network architectures, 

including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 

generative adversarial networks (GANs). In CNNs, IN can be applied after convolutional 

layers and before activation functions, similar to other normalization techniques such as batch 

normalization (BN). 

In RNNs, IN can be applied along the time dimension, normalizing the activations of each 

time step individually. This can help stabilize the training of RNNs and improve their ability 

to capture long-range dependencies. 

In GANs, IN can be used in both the generator and discriminator networks to stabilize the 

training process and improve the quality of generated samples. By normalizing the activations 

of each sample individually, IN can help ensure that the generator produces diverse and 

realistic samples. 

5.2 Training Considerations: When training DNNs with IN, it is important to consider the 

effect of IN on the optimization process. IN normalizes the activations of each sample 

individually, making the optimization process more stable and efficient. However, IN 

introduces additional parameters (scale and shift parameters) that need to be learned during 

training. 

To ensure the effectiveness of IN, it is important to initialize the scale parameter γγ to a value 

close to 1 and the shift parameter ββ to a value close to 0. This helps prevent the normalization 

from affecting the initial stages of training and allows the network to learn the optimal 

normalization parameters. 

Moreover, it is important to monitor the training process and adjust the learning rate and 

other hyperparameters accordingly. IN can affect the learning dynamics of DNNs, so it is 

important to experiment with different settings to find the optimal configuration for a given 

task. 

5.3 Computational Efficiency: IN is computationally efficient compared to other 

normalization techniques such as batch normalization (BN). Since IN normalizes the 

activations of each sample individually, it does not require computing statistics over the entire 

mini-batch, making it suitable for tasks where batch statistics are not ideal. 
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Moreover, IN can be easily parallelized across samples and channels, allowing for efficient 

implementation on parallel architectures such as GPUs. This makes IN a practical choice for 

training DNNs on large-scale datasets. 

 

6. Applications of Instance Normalization 

Instance normalization (IN) has shown remarkable effectiveness in various applications in the 

field of deep learning. In this section, we discuss some of the key applications where IN has 

been successfully applied, highlighting its benefits and impact on the performance of deep 

neural networks (DNNs). 

6.1 Style Transfer: Style transfer is a popular application in computer vision where the style 

of one image is transferred to the content of another image. IN has been shown to be effective 

in style transfer tasks by normalizing the activations of the content and style images separately 

and then combining them to create the stylized image. 

By normalizing the activations of each sample individually, IN helps preserve the style of the 

style image while maintaining the content of the content image, leading to high-quality 

stylized images. IN has been used in conjunction with convolutional neural networks (CNNs) 

to achieve impressive results in style transfer tasks. 

6.2 Super-Resolution: Super-resolution is another application in computer vision where the 

resolution of an image is increased. IN has been shown to be effective in super-resolution tasks 

by normalizing the activations of the low-resolution input image and then upsampling the 

normalized activations to generate the high-resolution output image. 

By normalizing the activations of the low-resolution image, IN helps stabilize the training 

process and improve the quality of the super-resolved images. IN has been used in 

combination with CNNs to achieve state-of-the-art results in super-resolution tasks. 

6.3 Image Generation: IN has also been successfully applied in image generation tasks, where 

the goal is to generate new images from scratch. By normalizing the activations of the 

generated images, IN helps ensure that the generated images have realistic textures and 

colors. 
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IN has been used in generative adversarial networks (GANs) to improve the stability of the 

training process and the quality of the generated images. By normalizing the activations of 

the generator network, IN helps prevent mode collapse and improve the diversity of the 

generated images. 

6.4 Image-to-Image Translation: Image-to-image translation is a challenging task where the 

goal is to translate an image from one domain to another. IN has been shown to be effective 

in image-to-image translation tasks by normalizing the activations of the input image and 

then translating them to the output domain. 

By normalizing the activations of the input image, IN helps improve the quality of the 

translated images and reduce artifacts. IN has been used in combination with CNNs to achieve 

impressive results in image-to-image translation tasks, such as in converting sketches to 

photographs or in changing the season of an image. 

 

7. Performance Evaluation 

The effectiveness of instance normalization (IN) in stabilizing and accelerating the training of 

deep neural networks (DNNs) has been demonstrated in various studies. In this section, we 

present a performance evaluation of IN through comparative studies and case studies, 

highlighting its impact on the training process and the performance of DNNs in different 

tasks. 

7.1 Comparative Studies: Several comparative studies have been conducted to evaluate the 

performance of IN against other normalization techniques, such as batch normalization (BN) 

and layer normalization (LN). These studies have shown that IN can achieve comparable or 

even better performance than BN and LN in various tasks, particularly in tasks where batch 

statistics are not ideal. 

For example, a study by Ulyanov et al. compared the performance of IN, BN, and LN in style 

transfer tasks and found that IN outperformed BN and LN in terms of visual quality and 

convergence speed. Similarly, a study by Dumoulin et al. compared the performance of IN 

and BN in image-to-image translation tasks and found that IN achieved better results in terms 

of image quality and realism. 
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7.2 Case Studies: Several case studies have also been conducted to evaluate the effectiveness 

of IN in specific tasks. For example, a case study by Huang et al. applied IN to the task of 

super-resolution and found that IN improved the quality of the super-resolved images 

compared to BN. 

Similarly, a case study by Choi et al. applied IN to the task of image generation and found 

that IN helped stabilize the training process and improve the diversity of the generated 

images. These case studies demonstrate the effectiveness of IN in improving the performance 

of DNNs in specific tasks. 

7.3 Impact on Training Process: IN has been shown to have a significant impact on the 

training process of DNNs. By normalizing the activations of each sample individually, IN 

helps stabilize the training process and reduce the likelihood of vanishing or exploding 

gradients. This leads to faster convergence and improved generalization performance of 

DNNs. 

Moreover, IN has been shown to act as a regularizer, reducing the need for other 

regularization techniques such as dropout. By normalizing the activations of each sample 

individually, IN helps prevent overfitting and improve the generalization performance of 

DNNs. 

7.4 Computational Efficiency: IN is computationally efficient compared to other 

normalization techniques such as BN. Since IN normalizes the activations of each sample 

individually, it does not require computing statistics over the entire mini-batch, making it 

suitable for tasks where batch statistics are not ideal. 

Moreover, IN can be easily parallelized across samples and channels, allowing for efficient 

implementation on parallel architectures such as GPUs. This makes IN a practical choice for 

training DNNs on large-scale datasets. 

 

8. Challenges and Future Directions 

While instance normalization (IN) has shown remarkable effectiveness in various tasks, there 

are still several challenges and areas for improvement. In this section, we discuss some of the 

challenges associated with IN and potential future directions for research in this area. 
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8.1 Robustness to Batch Size: One of the challenges of IN is its robustness to batch size. IN 

computes normalization statistics per sample, making it sensitive to the batch size. When the 

batch size is small, the computed statistics may not be representative of the entire dataset, 

leading to suboptimal performance. 

Future research could focus on developing IN variants that are more robust to batch size 

variations. This could involve adaptive mechanisms that adjust the normalization parameters 

based on the batch size or novel normalization techniques that do not rely on batch statistics. 

8.2 Adaptability to Dynamic Inputs: IN assumes that the statistics of each sample remain 

constant throughout training. However, in tasks where the input distribution changes over 

time, such as in online learning or adaptive systems, this assumption may not hold. 

Future research could explore adaptive IN techniques that can dynamically adjust the 

normalization parameters based on the input distribution. This could involve incorporating 

feedback mechanisms that update the normalization parameters based on the current input 

distribution or using online learning techniques to adapt the normalization parameters over 

time. 

8.3 Generalization to New Domains: IN is often trained on a specific dataset and may not 

generalize well to new domains or datasets with different characteristics. This limits its 

applicability in real-world scenarios where the data distribution may vary. 

Future research could focus on developing domain-adaptive IN techniques that can 

generalize across different domains. This could involve unsupervised domain adaptation 

techniques that learn to adapt the normalization parameters from a source domain to a target 

domain without labeled data. 

8.4 Computational Efficiency: While IN is computationally efficient compared to batch 

normalization (BN), it still incurs a computational overhead, particularly in tasks with large 

input dimensions or complex network architectures. 

Future research could explore optimization techniques to improve the computational 

efficiency of IN. This could involve developing sparse IN variants that only compute 

normalization statistics for a subset of samples or channels, or exploring low-rank 

approximations to reduce the computational cost of IN. 
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9. Conclusion 

Instance normalization (IN) has emerged as a powerful tool in the training of deep neural 

networks (DNNs), offering benefits such as improved stability, accelerated convergence, and 

enhanced generalization performance. In this paper, we have provided a comprehensive 

overview of IN, including its techniques, applications, theoretical foundations, 

implementation details, performance evaluation, challenges, and future directions. 

We discussed the basic formulation of IN, which normalizes the activations of each sample 

individually, making it suitable for tasks where batch statistics are not ideal. We also explored 

various extensions of IN, such as conditional instance normalization (CIN) and adaptive 

instance normalization (AdaIN), which offer more flexibility and control over the 

normalization process. 

Furthermore, we examined the applications of IN in various tasks, including style transfer, 

super-resolution, image generation, and image-to-image translation. Through comparative 

studies and case studies, we demonstrated the effectiveness of IN in improving the 

performance of DNNs in these tasks. 

Additionally, we discussed the theoretical foundations of IN, highlighting its mathematical 

formulation and its comparison with other normalization techniques. We also presented 

implementation details of IN, discussing its integration into different network architectures 

and its impact on the training process and computational efficiency of DNNs. 

Moreover, we conducted a performance evaluation of IN, showcasing its effectiveness 

through comparative studies and case studies. We discussed its impact on the training 

process, including its role as a regularizer and its ability to stabilize the optimization process. 

Finally, we identified several challenges associated with IN, such as its robustness to batch 

size variations, adaptability to dynamic inputs, generalization to new domains, and 

computational efficiency. We also proposed potential future directions for research in these 

areas, including the development of more robust and adaptive IN techniques and the 

improvement of its computational efficiency. 
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