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1. Introduction 

In this IoT-connected vehicular network, a robotic system is distributed at the global scale and 

oriented towards establishing Robot-Enabled Networks for personal mobility but also 

anywhere else alongside the roads; hence, denoted in future versions of the paper as the 

Internet of Things-connected Autonomous Vehicle Networks, IV-AN or simply Autonomous 

Vehicle Networks, AN. [1] The Internet of Vehicles (IoV) has attracted considerable attention 

from the wireless communication and vehicular networking research communities, and its 

subdomains are multitier networks of entities that represent the composite structure of a 

cognitive and cooperative Cyber-Physical System, as a Complex IoT—Internet of Things—

connected Autonomous Vehicle Networks (IoT-connected Autonomous Vehicle Network—

IoT-Connected AN or simply AN), as introduced in this paper after performances using 

Global System for Mobile Communications (IoV–IV–AN—Internet-Connected AN)3 

contributions. Finally, this article has as thesis—definition—formula the top-level objective on 

what means the next pillar of the “Smart Car” deployed under the umbrella called a lot later 

Robot-Enabled Networks, where the global robotic clouds are directly perturbing the robotic 

clouds of the interconnected “IV-AN ND” (Navigation Devices) class of real-car human-

oriented systems. 

[2] Intelligent Transport Systems (ITS) have created a new domain called the Internet of 

Things-connected Autonomous Vehicle Networks, where autonomous vehicles communicate 

with each other in the form of an interconnected network. [3] In this paper, the efficient IEEE 

Internet of Vehicles (IoV) platform is studied, where a vehicular ad hoc network of vehicles is 

connected with the Internet in a seamless manner: not only do the vehicles have dedicated 

and augmenting sensors and devices for their IT (called Internet in the Vehicles-oriented 
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Internet-connected or Internet of Vehicles—IoV), but also they have Internet sensors and 

devices that are of interest to them in terms of environmental, calming and entertaining facts 

according to their actions and positions on the Earth (called the Internet of Things-connected 

Autonomous Vehicle Networks or addressed just Autonomous Vehicle Networks for short). 

An evolutionary variant of this IoT-connected vehicular ad hoc network introduces the robotic 

constellation of the above-considered networks with augmented connectivity towards the 

Internet and autonomy for taking decisions. The main objective is to model by extending the 

existing IoT–IV–AN formal framework the hybrid variant that is denoted by IoT–IV–AN–DC 

and that is presenting a completely new topic for research in the field of systems of this 

complexity. 

1.1. Background and Significance 

The aspect and the possibility of the proper operation of Intelligent Transportation Systems 

(ITS) in a changing environment have been widely discussed. In many studies, the term 

dynamicity was analyzed from the point of view of advanced driver assistance systems 

(ADASs) features, like active steering control, autonomous driving, digital twin-based soft 

computing techniques to minimize the complexity and access spatiotemporal dynamicity, 

shared mobility transportation services, route-based design approaches for transportation 

service networks, and transportation safety, security, and privacy concerns in the context of 

autonomous and intelligent vehicles (AVs/AIVs), especially IoT-connected ones, which 

benefited from this combination of original potentiality analysis, mainly on the cybersecurity 

issue [4]. Dynamicity was also analyzed in the coating and enveloping of printed labels on 

vehicles; material for labelling vehicles is multi-layered, and in the context of the piston 

movement in vehicles while switching to the second fuel mode in dual fuel engine vehicles. 

The concept of intelligent transportation systems (ITS) includes the field of transportation 

systems, which deals with the use of modern information and communication technologies, 

computing power, sensors, and devices to improve road transport, road safety, and monitor 

road traffic in general. Among the most important goals of ITS are the improvement of road 

safety, the reduction of traffic congestion, and the resulting negative effects (including 

environmental and economic ones) on urban ecosystems [5]. Automation of transport systems 

promotes the idea of using autonomous vehicles in the public and private transport of the 

future without the participation of a driver. In the context of studies on autonomous vehicle 

networks (connected and automated vehicles, CAVs), real vehicular scenarios experience the 
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dynamism of network topologies, the mobility of neighboring vehicles/roadside units 

(RSUs), communication quality variations, vehicle heterogeneity, continuous appearances 

and disappearances of new requests, etc. [6]. 

1.2. Research Objectives 

The main goal of this research is to utilize the available technologies and latest communication 

paradigms to provide dynamic and safe route guidance services to road users, navigating in 

IoV environment [7]. The prime focus is on the integration of all latest IoV concepts, such as 

sensor and communication technologies, seamless integration of V2I communication, and 

other dynamic route planning algorithms, to provide optimized, fuel-efficient, and safe route-

navigation services to vehicles [8]. This navigation service will be used in various ITS services 

including emergency vehicle navigation, road user categorization, and intelligent routing 

techniques, in order to provide an efficient navigation service to the user in IoV environment. 

Now a days, traffic monitoring, energy resource saving, and optimized route planning into a 

specific traffic environment is very necessary to ensure the safety and user satisfaction. This 

research project aims to integrate the IoV communication and computational intelligence to 

predict and optimize the traffic congestion and road blockages, along the most relevant road 

path to calculate the most efficient road path by incorporating several dynamic road related 

parameters to compute the most efficient vehicle routing recommendation [9]. This routing 

service priority will consider the pollution minimization, electric Vehicles (EVs) and HEVs 

optimized path algorithm to be implemented to prolong the vehicles’ travel range in IoV. 

1.3. Structure of the Work 

The recent investigations in the area have suggested the use of various established and 

emerging computing paradigms to model transportation networks to capture complex 

interdependencies and variations inside the network layers. A policy suggestion for dynamic 

system control, optimization of parameters in transportation networks, and case studies about 

intelligent transportation systems have been integrated based on the obtained results. Here, 

we aim to propose a methodological and computational policy, using models constructed via 

machine learning algorithms by data collected from various sources, to control transportation 

networks in real-time to obtain sustainable transportation systems. From the vast literature 

from 1999 to 2017, clustering, optimization, and game theory have been the main strategies 

for transportation network research, with learning algorithm-based research lagging behind. 
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For machine learning, support vector machines, neural network models, were also dominant 

paradigms. 

Exploration in IoT-assisted autonomous vehicle landscape has recently gained significant 

popularity due to availability and reliability of sensory data from traffic infrastructure [10]. 

The major contributing factors include the prospering telecommunication sector, the newly 

emerged computing paradigms, e.g. cloud and edge computing, high computational power 

of multi-core processors and GPUs, and the maturation of machine learning models which are 

now capable of handling large-scale data. This has made it possible to learn complex relations 

to create and train models that offer state-of-the-art accuracy in prediction, classification, and 

optimization tasks. Machine learning models can be trained to provide run-time guidance to 

vehicles to select a route from the spectrum of dynamically changing roads based on the 

current traffic situation [5]. 

2. Fundamentals of Autonomous Vehicles 

Accordingly, some research works have been dedicated to understand the implications and 

optimality of the data-sharing mechanisms percolating through the interior wireless IoT. For 

instance, the work in demonstrates how data-exchange on IoT can be broken down to a four-

tiered dataflow, namely, a low-level dataflow may be complemented with the roadmap for 

issuing a message from the cabin controller until it is understood by another bodily connected 

AV, and a high-level dataflow may be anticipated at the system level to yield the optimal 

message payload and frequency within an IoT-connected platoon of AVs, taking into 

consideration the optical communications plus differential buffer and energy constraints 

based on various layers of marshalling between exteroceptive sensors and IoT-based 

information. Furthermore, not to be overlooked is that the complete mobility environment for 

IoT can also embody the digital twin (DT-lifefinder) of the originating environment, be it i) a 

smart destination (smart city or smart highway) that shares internet services with the onboard 

network of each connected AV this side of the managed destination, or ii) the vehicular 

exterior environment that communicates via cyber-to-vehicle communication with the 

connected vehicle’s driverless navigation. 

Real-time, coordinated, and automated route planning for AVs to adaptively handle 

unpredictable events (e.g., traffic congestion, roadblocks, parking spots, and 

refuelling/charging facilities) is of great importance to improve the travel experience of 
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passengers and usability of urban AVs. Leveraging the increasing capabilities offered by 

sensor and communication technologies [11], how the future AVs will communicate and 

cooperate autonomously to achieve those goals is the focus of a range of ongoing studies [10]. 

Connected AVs, as presented in Figure 1, are enabled over the wireless communication 

infrastructure of the Internet of Things (IoT) [12]. Although the public safety insurance and 

traffic regulations will require those vehicles to be equipped with a core set of onboard 

publishing and subscribing functionalities (i.e., V2V), they will also benefit greatly from using 

IoT-connected devices. 

2.1. Definition and Components of Autonomous Vehicles 

The IoT technology facilitates augmented mobility assistance; synchronous, dynamic and 

intelligent vehicle mobility support and required vehicle communication that improvises 

human, as well as vehicular security. Increasing and dynamic traffic is generating a major 

concern needed to be addressed that would require sensitive, human-inspired intelligence 

with extreme fast response in the CAVs variety domain. Thus, for identification, Virtual 

Market Environment (VME) brings the flexibility and research in terms of trust for assigning 

resources of the nature of advertising reinforcement-based importance as required [9]. Aiding 

distributed, dynamic, and odd traffic navigation in Civil AV brings challenges invited by their 

real-life problems; such as, cooperative nature and different orientation with respect to the 

supporting infrastructure (road, traffic signal, traffic decoration), latent intention detection, 

the vehicle-to-everything (V2X) coupling communicated challenges, and their frequent 

characterization uncertainty. The traffic management productivity requires the end-to-end 

real-time, human-inspired dynamic route planning and coordination, latency responsive with 

reasonable computational costs, and the traffic-decreasing ideas. 

The term ‘IoT sensor networks’ in the single vehicle domain are anticipated with sensors 

inside or attached to the vehicle (e.g. on board diagnostic - OBD, wheel speed sensors, 

cameras, GPS). The sensors equipped in the autonomous vehicle for localization, mapping, 

mobility, and security are considered to be part of the IoT-based components of autonomous 

vehicles. An autonomous vehicle system consists of integrated and coordinated components 

such as communication systems of user sensors, actuators, driving controllers, and i/o 

interfaces running on and connected to the internet and mode internet connected vehicles, 

which established IoT-based systems and provide data management for realtime operational 

support [13]. In this work, we design dynamic route planning schemes in CAVs networks by 
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exploiting the C-V2X communication feature, allowing the CAVs networks to incorporate 

perceived traffic information and dynamic network topology control through a 

communication network to resolve overall network constraint time dependently. 

2.2. Challenges and Opportunities in Autonomous Vehicle Technology 

Smartcity problems can be real-world optimisation problems. Inspired by this, the work 

tackles some of classical smartcity problems such as: (1) Traffic congestions; (2) Pollution; and 

(3) Shortest path optimization for multiple cars in a smart city [14]. The network provides 

realistic environment and especially the possibility of modeling the traffic. The network also 

provides state of the art 2D obstacle avoidance characteristics which can be leveraged for 3D 

simulation of reality, etc. Thus, the network however also enables 3D real models visualisation 

which for example can be used to provide realistic 3D models of smart city environment such 

as VR environments, car diagnosis, etc. 

Algorithms such as Dijkstra and A* are among the most commonly used for generating paths 

in traditional autonomous vehicle (AV) technology using static environments [15]. However, 

these methods fall short in dealing with the complications of dynamic environments. In the 

AV domain, the work extensively leverages specific heuristics tailored for specific traffic 

infrastructure while proposing a novel approach to vehicular trajectory estimation obtainable 

from the network level data [12]. Furthermore, the work proposes a method that conducts 

optimisation so that vehicles can cooperate in the optimised road networks. Additionally, the 

work examines parameter selection within a multi-layered representation that uses various 

types of road network information to provide the shortest possible paths. The authors predict 

traffic flow and select the most efficient path based on both macroscopic traffic flow prediction 

and real-time traffic monitoring. 

3. Internet of Things (IoT) in Autonomous Vehicles 

These varied entities are now realize various desired objectives such as route privacy, 

trajectory privacy, and journey privacy so as to incentivize vehicles. One of the strong 

motivations for the current work attracts its significance in how spatially diverse requirements 

like vehicular networking, mobility and lifecycle support. The existing IoT structure in 

standard CAV operations as outlined in Ref. [16] utilized usual vehicular networking and 

vehicle learning fairways of research subjects during peak hours to understand V2V messages 

with roadside nodes and vehicle driving statuses (e.g., position and velocity information). 
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V2I communication can be better facilitated through the central cloud as such dynamic route 

planning effect. V2I communication can be facilitated through Internet-connected edge 

intelligent transportation systems (ITS) [17]. This network now enables implementational 

services that range across a spectrum of such enhanced navigation platforms which are 

extended in achieving intelligent connected vehicles (ICVs). As outlined in Ref., that new 

integrated entities include vehicle augmented personal mobility systems (vPMS), vehicle 

cooperative augmented personal mobility systems (CvPMS), and vehicle participative 

augmented personal mobility systems (PvPMS). 

In the advent of the Internet of Things (IoT), dynamic route planning, and the wide-area and 

local system it is equipped with not only exist as standalone IoT nodes having their own 

sensory attributes and data processing capability, but can also absorb each other’s sensory 

attributes [18]. Dynamic route planning can absorb locally generated probability models and 

real-time information sources for traffic pattern maintenance and sensor guidance. By 

definition, IoT is a concept that refers to connected entities of varied nature undergoing 

dynamic changes while relying on the edge and core interaction to deliver services in an 

affordable and efficient manner. IoT can interconnect different kinds of entities—vehicles, 

infrastructure, drivers and traffic administrators—thus forming a connected society and 

producing a so-called dumbbell shape (S1) corresponding to vehicle-to-vehicle (V2V) and 

vehicle-to-infrastructure (V2I) communication loops. Any message exchange between any 

two nodes constitutes V2X (where X indicates road performance analysis, vehicular 

networking). 

3.1. IoT Architecture and Components 

There are two entities in the application layer: the IoV service and the smart city service. The 

latter one is, in fact, the passive extension of the IoV service, which will be protocol mapped, 

physically routed, and then managed to deliver services to the Internet. Both entities of these 

services will harvest the data from vehicles, mesh with vehicle data coming from the 

Coordinative Computing Layer to support complex decision making, write feedback to 

vehicles, and cooperate to serve the driver and urban managers at all times. For example, 

artificial intelligence realizing the operation of autonomous vehicles needs to synthesize 

enough mental perception to make planning decisions and to implement the motion control 

process. The action and decision-making process of autonomous vehicles corresponds to the 

coordinated computing layer, and the successful implementation of this section needs to be 
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supported by the sensing perception and operation control platforms from the other two 

layers, as well as the coordinated transportation fleet, if we focus on the road surface driving 

environment. Mutual observations or help can be achieved through the microservice 

mechanism. For instance, vehicle safety warnings are derived from the feedback of urban road 

side geographic features and artifacts, the coordinated platform can adaptively obtain a 

sufficient semantic description. 

This paragraph discusses the proposed IoT architecture and components, consisting of a four-

layer stratus of sensing, network access, coordinative computing, and application layers. 

Meanwhile, IoV, as an important part of IoT, reflects the in-depth interaction between people, 

vehicles, road side units (RSUs), and web services, among others [19]. The IoV applications 

generally cover the whole process from sensing to perception, planning, scheduling, and 

control, forming a complete sensing-based control loop. For a driving-centric IoT architecture, 

the network access layer bundled the in-vehicle network and communication system as one 

user side, while the other two links among vehicles (V2V), vehicles and RSUs (V2I), and 

vehicles and web servers (V2X) are considered as the cloud in the IoT architecture. The vehicle 

perception layer contains various sensors and related fusion algorithms to monitor the 

traditional driving environment, taking GPS, Inertial Measurement Unit (IMU), camera, 

LiDAR, and radar sensors as examples [10]. The coordinating computing layer is responsible 

for fusing data from different vehicles, or from vehicles and infrastructure, to produce the 

driving environment. Commonly used technologies include DSRC and Cellular V2X (C-V2X). 

Apart from normal data transmission, C-V2X supports edge computing, which is 

transforming cloud computing to the edge of the network. An open standard defined LTE-

based V2X technologies for different communication modes at the beginning, while its later 

releases had been gradually evolving to 5G V2X [20]. Meanwhile, cloudlet will be deployed 

at the intersections to alleviate the backhaul traffic, and multiple micro-clouds will be 

employed in the urban feeders and collectors to improve the performance of edge computing 

in this distribution network. 

3.2. Applications of IoT in Autonomous Vehicles 

Given that the effective management of urban traffic helps in promoting environmental 

protection, social equity, and a vibrant economy, a wide range of planned, ongoing, and 

deployed implementations—primarily grounded on Vehicle-to-Everything (V2X) 

communications and the Internet of Things (IoT) — has been progressively facilitating the 
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incorporation of vehicle-free driving transitions into Intelligent Transport Systems (ITS) that 

support the operation of CAV [21]. Along similar lines, the existing road network becomes 

increasingly saturated due to the incessantly increasing number of vehicles, overwhelming 

demand for parking spaces, heightened negative effects of congestion, and implications 

associated with accidents and road incidents. Providing Performance Tests of typical use 

cases, a functional test between IoT-based and cloud architectures is presented, underscoring 

an open research question on the need for numerous possible theoretical, performance-

related, and practical validations. The ecosystem lends context to the cloud platform as the 

pivot of cooperation among various other sub-systems. As a Post-State-of-the-Art (Post-

SOTA) offering, the association between Software-Defined Networking (SDN) and Vehicular 

Ad-hoc Networking (VANET) is included in this book chapter, as is the state-of-the-art 

discussion on IoT, 5G, and the future course of IoCV/CAV connected infrastructureonomies. 

Autonomous Vehicles (AV) directly depend on Intelligent Transportation Systems (ITS) to 

reduce multiple factors that impact drives, such as transit time, fuel consumption, and carbon 

emissions. In this case, ITS is crucial in taking decisions for traffic management in autonomous 

vehicles, avoiding congestion in the road transport systems. In recent decades, with the 

growth of the internet, advancements in telecommunication technologies, and recurrent 

increases in vehicular performance, the trends in traffic management in Intelligent 

Transportation Systems have shifted towards traffic optimization in the presence of connected 

autonomous vehicles [18]. In this context, the emergence of Intelligent Transport Systems (ITS) 

and vehicular communications technologies have underpinned the development of an 

Internet of Connected Vehicles (IoCV), emerging as an Infrastructure-to-Vehicle and 

Everything-to-Everything (xE2X) ecosystem. Therefore, this chapter gives an overview on the 

technologies from which the vision is built, the ITS challenges that are permeating its 

development and the sensor and computational infrastructures that sustain it. We then, 

expose the main approaches to dynamic route planning and define a roadmap for future 

research on the subject, as a guide for the development of successful ITS in the future. 

4. Dynamic Route Planning in Autonomous Vehicles 

Dynamic route planning in the context of autonomous vehicles entails adjusting routes in real-

time to avoid new traffic jams and minimize travel times. The new paradigm introduced in 

this section via [22] and [23] includes improving the mobility of autonomous vehicles, 
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optimizing driving conditions by adjusting the speed of each vehicle to follow a dynamically-

changing itinerary. As communication technologies have been evolving, communication-

based issues also have become important to increase driving autonomy. The intelligent edges 

compute the decision at once without considering those dynamic and the edge-based 

computing power to be low. 

The evolution of artificial intelligence and machine learning has contributed to the 

development of autonomous vehicles. Autonomous vehicles require accurate and dynamic 

navigation and reliable communication to automate tasks. Currently, the interest for 

developing smart cities where mobility can be managed and various services and amenities 

based on smart city applications can be developed is arising. New solutions are necessary for 

finding optimal route plans to deliver goods in real-time, thus augmenting the importance of 

routing algorithms and data-related optimization to provide valuable insights and derive new 

insights from IoT devices generating large volumes of real-time data [1]. Hence, in the future, 

autonomous vehicles should consider IoT-generated global variables. 

4.1. Traditional vs Dynamic Route Planning 

Old traditional route planning methods used static data and only rarely updated maps based 

on the historical data. However, for the modern scenario, they are severely limited as traffic 

operates dynamically. Because of this, dynamic route planning (DRP) has gained a great deal 

of traction, with DRP now commonly used in online route planning systems around the web 

[24]. In this paper, we propose and evaluate a novel DRP system in the context of the Internet 

of Things for urban and motorway scenarios. Specifically, we simulate an online route 

planning system being run on data centers distributed across the city or motorway of interest, 

where each data center is responsible for collecting and processing local sensor data as well 

as controlling and managing locally-connected AVs. 

Traditional route planning consists of fixed, predefined routes selected based on an existing 

map – a map created and managed by various government agencies [25]. These routes are 

influenced by the maximum peak hour or daily traffic loads, as well as projected routes based 

on historical traffic data. In contrast, dynamic route planning (DRP) suggests routes based on 

the real-time data measured by several data centers connected by IoT devices. A drawback of 

conventional route planning is the limited scope, drawn from historical and other static data. 
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Taking the existing traffic condition into account when planning a route can make a significant 

difference in the traffic flow. 

4.2. Challenges and Requirements 

Dynamic and time-dependent challenges of implementing route optimisation for dynamic IoT 

or autonomous vehicle networks include the need for an up-to-date view of the road network 

(traffic conditions, hazards, and sensor perception) for real-time operation [26]. This imposes 

strict computational constraints on the route planning algorithm in terms of computation time 

overhead because the sensor-perceived road view can change at any time or update cycles can 

be long. The decomposed architecture of pipeline or agent-based algorithms with modular 

navigation is desirable with sensor data being converted to final infrastructure-based 

command signals using real-time deep learning along the automated vehicle network route 

[27]. Given the dynamic nature of virtual traffic lights and message TTL values in IoT 

networks, concerns about data grinding and latency for queueing packets, 

energy/communication budgeting, and data throughput are the primary challenges for 

planning and navigation strategies to consider while operating in stable or extreme network 

dynamics with connected tethered vehicles ‘popped into’ or communicated with via edge IoT 

gateways [2]. Another challenge is to find real-time edge algorithmic solutions for the IoT 

feedback loop to optimise driving input, such as minimising fuel consumption or minimising 

CO2 production for battery and internal combustion propulsion system choices. These 

algorithms can work in concert with companion mobile, PC, or edge-side apps presenting 

HMI data for global determinism in passengerconnected autonomy with full access to 

increasingly customisable take-me-anywhere drive-space. 

5. Computational Intelligence in Autonomous Vehicles 

Collaborations among HMI (human–machine–interaction) and social routes that manage and 

predict traffic scenarios can design engagement policies, validate policies, and measure user 

validation [5]. When C2X technologies are used, IoT plays a key role in solving the 

complications of transportation in smart cities, particularly traffic congestion. Furthermore, 

Intelligent Mobility (IM) services, which have come into play, need to interact with CPS and 

IoT. In CPS, real-world devices and physical objects are integrated with the ICT systems, 

which can perceive events and support the development of interactive services for the users 

that are connected by social networks. In summary, motivation is developed to collect suitable 
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travel options for transit routing and so improve trip attributes such as travel time, distance, 

etc. To attain Intelligent Mobility (IM) in Smart Cities, it is necessary to integrate the transport 

services with Hybrid System Intelligent Choices. To create an enhanced environment for 

traveling, to collect citizen-friendly options and to build attractive strategies for travel that 

should inter-dependently connect a person with his preferences in routes [18]. 

[15]By design, traditional path planning algorithms, such as Dijkstra and A*, are for static 

graphs and are not suitable for the dynamic, real-time traffic environment of urban road 

networks. In recent years, researchers have proposed hybrid systems to overcome this issue, 

which satisfy real-time dynamic path planning in urban settings. This hybrid system is an 

integration of different algorithms, such as the genetic and simulated annealing algorithms. 

The integration of Cyber–Physical Systems (CPS) and Internet of Things (IoT) technologies for 

smart cities could help to solve traffic-complication-related issues and significantly improve 

the overall mobility within the smart city. Among customs, hybrid services and systems can 

generate beneficial relationships with transportation modes, such as car sharing, bike sharing, 

taxi services, and so on. The integration of Auto-drive with IoT and the cloud helps intelligent 

coordination of Centralized algorithms. Such coordination can make the best use of traffic 

infrastructure management, including a set of performance-quality indicators, pavement 

condition, fuel savings, U-space services, and environmental feedback. 

5.1. Overview of Computational Intelligence 

On the trip to the development of the hierarchical hyper Heuristic (HH) for Dynamic Multi-

Depot Vehicle Routing Problems (DMVRP), a simple genetic algorithm and some test 

instances were utilized, where a helicopter be utilized for rapid distribution of goods to the 

emergency and permanent stations of the paramedic system of Uruguay. This is not only and 

only the first experiment of hybridization of the results of the most distinct algorithms. Also, 

heuristics cover those who can be based on simple metrics, thermal exchange between 

Melbourne and the rural retreat of Yarram for the control of a cooling system, air conditioning 

by an energy-hungry data centre for greenhouse gases in order to improve its energy 

efficiency, harm the world enormously, provided a running contribution or in reverse, how 

the deployment of a vehicle network for the system of Western Australia surveillance of traffic 

and public safety has had a big impact on the operating costs of both displaced patrols and 

available vehicles. The interpolation is exclusive to one of the considered agents, generally 

treating the entire environment as immutable [3]. 
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When road networks get involved in transportation, problem-solving procedures are usually 

utilized to identify the dynamic and the best paths through the consideration of frequently 

changed costs and traffic states. These problem-solving procedures can be divided into exact 

algorithms and heuristic/metaheuristic algorithms. The shortest path problem (SPP) is the 

first algorithm in which, connected with the Chicago Transportation Center motivated by an 

IEEE Intelligent Transportation Systems Challenge in 2002, the winners have utilized a 

worldwide changing heuristic algorithm. For an illustration, there are yet some detrimental 

trade-offs concerned with paths that are slightly better in terms of their length, but their 

smoothness is significantly uneven. To defeat such a state of affairs, they have resigned to 

jerky roads and such modification has permitted them to stay competitive also against the 

winners’ path in the route competition called MobiAmI 2008 [28]. Considering the fact that 

these improvements are achieved in a direct search, they have quickly recognized the 

potential of soft computing methods, finally taking a decision for variation of this search of 

individuals’ heuristic among the methods of genetic or ant-colony algorithms. The 

collaboration and possible cross-breeding of genetic algorithms and ant-colony methods, 

therefore relies on the results of on-going or finished work with identification of various 

routing problems, and also the general enhancement of traditional methods such as Dijkstra, 

heuristic, or A-star path searches. Vanity will be one of the enemies of those who read the rest 

of this article. 

5.2. Types of Computational Intelligence Algorithms 

Computational intelligence techniques are extensively applied in the route planning 

algorithms to enhance the services offered by the IVA networks. For instance, the attention 

mechanism and long short-term memory (LSTM) network are used to implement attention-

based, interactive trajectory prediction for decision making, incorporating physical 

understanding and social conventions. Soft attention and hard attention are used to capture 

physical interactions and social interactions. Additionally, multimodal trajectory prediction 

is made by considering prediction uncertainty. This method outperforms the state-of-the-art 

Baseline LSTMs for one-step trajectory prediction models on the Argoverse motion 

forecasting benchmark. On the other hand, K-ethon Linear Temporal Regularizer (KLTR) and 

Decoder are used in a generative recurrent neural network-based trajectory prediction model 

for autonomous route planning. KLTR is used to encode class labels and the fact time step 

efficiently in an efficient way. The proposed trajectory prediction model is an end-to-end 
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model that integrates features extraction, class prediction, temporal dependency, and 

stochastic generation [29]. On the other hand, progressive route planning architecture consists 

of two generative adversarial networks (GAN). Progressive Route Planning GAN 

(ProgRPGAN) is introduced for interactive autonomous navigation in real-world 

environments. Using both self-supervised and reinforcement learning, a generative model, 

ProgRPGAN, predicts natural, diverse, and efficient routes that take interactive behaviors into 

account. In the meantime, the discriminator, a low computational complexity architecture, 

distinguishes real routes from fake routes to iteratively improve the generative model. As 

compared to state-of-the-art dense, end-to-end navigation methods, ProgRPGAN is shown to 

make more admissible predictions, which yield more safe and human-friendly behaviors [30]. 

Dynamic route planning algorithms play an essential role in the effective operation of IoT 

(Internet of Things)-connected autonomous vehicle networks. In this section, the popularity 

of computational intelligence techniques applied for dynamic route planning in the field of 

IVA networking will be discussed in detail [6]. 

6. Case Studies and Applications 

Urban traffic systems are becoming increasingly complex and require adaptive route planning 

in consideration of both traffic conditions and vehicle-network connectivity conditions [31]. 

An overall solution of the problem is presented in this paper, which consists of two main 

levels. We first introduce a system model and traffic simulation environment designed to 

consider the impact of IoV/C-ITS communication infrastructures on the transportation 

network and investigate more extensively the opportunities and challenges involved in 

dynamic vehicle routing. An original multi-attribute road and intersection metric is defined 

for specific road and intersection positions using a multi-agent process with minimum and 

maximum quantiles of the communication-specific QoS parameters, which are identification 

age, conference duration, and CCM validity time. 

The focus of this paper is to develop an intelligent routing system, featuring adaptive dynamic 

path-planning, for support of safe and reliable commuting of Cooperative Automated (CA) 

vehicles together with traditional human-driven vehicles in the era of IoT (Internet of Things) 

[3]. Since both CA and traditional vehicles could exist simultaneously on the road, 

investigations on this set-up are of pragmaticallycloser interest. [32] summarizes the trajectory 

planning framework for the autonomous vehicle equipped with wireless data transfer needs 
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according to the dynamic road information. An end-to-end data connection is established 

from a source CA to a destination CA through various communication points when the data 

transfer condition (under communication performance and energy sufficiency, etc.) is 

satisfied. By considering the unpredictability of road dynamics and the uncertainty of data 

transfer condition satisfaction, the problem is formulated as a Partially Observable Markov 

Decision Process (POMDP). For coping with the existing quadruple attention conflict of 

environment, data transfer, available energy, and the system’s general performance, an 

asynchronous advantage actor-critic (A3C) algorithm is used to provide a decision-making 

scheme for the dynamic pathological trajectory planning. 

6.1. Real-world Examples of Dynamic Route Planning in Autonomous Vehicles 

When a connected and autonomous vehicle (CAV) moves with its communication range CH, 

it establishes a connected graph called the communication graph (CH). Dijkstra’s algorithm 

with a communication cost function is popularly used for searching for the shortest path in 

such a graph. When all the CAVs start moving, the dynamic route planning problem becomes 

richer than the graph traversing problem at a micro-level. In this problem, the vehicles could 

perform see-first operations at intersections and refactoring operations in suboptimal routes. 

Keeping the trade-off between resource optimization and quality of service (QoS) in mind, 

these dynamic route planning problems are further modeled as multiobjective optimization 

problems and solved using algorithms like space division multiobjective shuffled frog-leaping 

algorithm (SDMOSFLA) [18]. To validate the proposed real-time approach, input data from 

the proposed referencing model is utilized to solve MTSR using different algorithms like 

ACO, genetic algorithm (GA), and PSO. 

Connected Autonomous Vehicles (CAVs) require dynamic route planning to find an optimal 

path between the source and the target, while handling environment changes and congestion 

in real time [33]. The planning algorithm should be able to handle real-world situations such 

as variability in infrastructure and interference in vehicular communication [3]. Road 

accidents usually happen at intersections, therefore, dealing with intersections is important in 

dynamic route planning. Several surveys and tutorials have been conducted for network 

optimization using the Internet of Vehicles (IoV). The objectives of route planning are to find 

safer, viable, and timely routes. Safer paths are determined from a vehicular communication 

perspective, ensuring reliability in data transmission and minimizing accidents. 

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra


Australian Journal of Machine Learning Research & Applications  
By Sydney Academics  84 
 

 
Australian Journal of Machine Learning Research & Applications  

Volume 1 Issue 1 
Semi Annual Edition | Jan - June, 2021 

This work is licensed under CC BY-NC-SA 4.0. 

7. Future Trends and Research Directions 

Ensuring the IoV remains resilient in challenging traffic scenarios is the overarching goal. 

Simplifying this goal means optimizing route planning and services. These can primarily be 

divided into two main applications. In the first case, the focus is on individual vehicles routing 

schemes. In a contrasting scenario, applications focus on the optimization of regional traffic 

operations. The research focuses on finding the optimal route, signaling the optimization of 

reaching the travel time. We have already divided the major scenarios concerned by the 

current research so far. First, it takes us through environmental vehicle scenarios scenario. 

After a case-analysis, the focus is on more advanced environmental vehicle scenarios with 

wonderful intelligent systems. While the focus of the data allocation issue is on the 

maintenance system (equipment-to-management) persistent connections, and in particular to 

promote the use of additional resources. During this work, we have specified the most 

preferred sort category in our case. Our main aim is to write through basic solutions already 

proposed in the literature [15]. Additionally, it has been shown that the same problem can be 

solved with more intelligent algorithms or make it proud of the negotiation scheme. Abstract: 

The transport systems for the continuous development and growth of sustainable 

development and economic prosperity are of great significance. Among the most important 

features that the data change has been introduced in transportation development. 

Vehicles today use their modules to sense the environment and communicate with each other 

in real time [32]. They are gradually evolving into full autonomous systems. The next 

generation of Internet of Things (IoT) vehicle networks will provide more bandwidth than is 

currently possible. This future trend is characterized by directional propo-sals and vibrations. 

Vehicle transceivers can directly exchange download information. This can be used to assist 

the sensor as well as with map updates, where increased bandwidth can become more 

effective. Routes are not only optimal in terms of energy, time, and cost savings [5]. Future 

trends include the addition of new criteria that account for direct data transfer requirements. 

The fastest vehicle plans for the shortest path in terms of time and installs a filter to consider 

more advanced criteria. 

7.1. Emerging Technologies in Autonomous Vehicles 

The concepts related to autonomous and connected vehicles contrast systems that have 

already been developed and implemented (e.g., the IEEE 802.11p standard and centralized 

traffic control centers) and popular models in which vehicles communicate directly with each 
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other using the VANET (Vehicular Ad-Hoc Network) concept. The main goal of existing 

vehicle communication systems is to ensure that vehicles report themselves to others through 

the exchange of information such as fuel level, the level of pollution emitted, or time before 

turning. However, the information exchange takes place exclusively between vehicles, while 

the proposed approach assumes the existence of a vertical infrastructure, which ensures the 

transmission of data received from vehicles to an Azure cloud in real-time. As the authors 

write, in practice, the quality of information contained in the real-time data stream gathered 

from the road infrastructure with sensors is not known [34]. 

Emerging technologies in the field of Internet of Things (IoT) are enabling the transformation 

of transportation systems through the use of autonomous and connected autonomous vehicles 

(CAVs), laying the groundwork for the development of route planning algorithms. Although 

the technologies being leveraged for this purpose span various disciplines and a plethora of 

IoT sensors and big data, the three driving recent developments in CAV networks are big 

data, AI, and IoT [35]. The integration of CAVs and IoV essentially facilitates the development 

of dynamic journey planning algorithms for CAVs based on inputs from the IoT and on data 

analytics such as AI. This integration has the potential to revolutionize transportation systems 

and devices, reinforcing both safety and comfort [36]. 

8. Conclusion and Key Findings 

In future work, although involving ANN, and fuzzy-set theory, CI may find the capability to 

in particular operate optimally with a dynamically-overlapping-environment IoV. To 

investigate to what extend the (not mis-managed) purse of driver or the auto-pilotly-

conducted by electric-car-wife speech user can feel comfortable to practice CI with real-time 

global and local information is an alternative topic that shall be discusses in our next paper. 

The communication-ability-conversions in the case of dependency on LTE, VANET, RSU and 

roadside sensor even in providing comfort feeling to passengers, families and drivers is 

another possible topic. Digital Wristband-Internet of Vehicles is another fresh approach to be 

brought in the framework of the most updated EMH that shall be counsel. We also recognize 

that, in the domain of IoT it is essential to create a dynamic route optimization methodology 

designed to manage vehicles with different traffic preferences for navigating the IoV. 

In fact, although until now, the term CI did not accurately specify a single perspective but AI, 

in the context of this review the term has a narrower definition encompassing ANN, fuzzy 
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set, GA, PSO, and rough set theories. The scope here is to create awareness and inspire those 

in the profession to tailor CI for dynamic route finding where (or whenever) CI connects IoV 

networks by ensuring the anticipated level of end-user perceived quality of routing 

applications. We have demonstrated that although CI has several alternative names and 

expressions, it is identified to be a mature planner, suitable for hands-free integrating with 

real-time traffic, social events, and road sensor or VANET viewing components of IoV. The 

road-sensor-viewing system is demonstrated further by introducing the artificial-intelligence 

theory labelled PrecautionMatching, which is an ANP-MOF method and feature-selection 

approach. Then, the system will decide to generate paths according to vehicle-sensed real-life 

conditions]. For instance, considering [Management That Fixes, Trains, Enhances and 

Cancels]. After characterising the contribution of practical safety throughout these road 

sensors, CI is capable of once fitting lower-energy-car owners need to handle defective parts. 

In this article, we provided an overview of the use of computational intelligence in intelligent 

transportation systems, focusing on computational intelligence in static route planning, 

followed by a critical view on the challenges and constraints in adopting computational 

intelligence for dynamic route planning in future smart cities. The review discusses the use of 

computational intelligence in dynamic route planning from three different perspectives—

route planning for connected and autonomous vehicles, routing relying on vehicular ad hoc 

network- (VANET-) based communication, and routing needing only cellular communication 

facilities. This discussion is followed by the discussion of the use of computational intelligence 

for alternative modes of future smart city transportation, including cycling and walking in 

implementing network routing and route planning across a smart city. 
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