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1. Introduction 

[1] The safe operation of autonomous vehicles (AVs) relies on accurately interpreting the 

surrounding environment, including the classification, detection, and tracking of other 

moving objects such as pedestrians and vehicles. The capacity of an AV to distinguish and 

track these other objects in real time is critical in making decisions that lead to safe 

maneuvering strategies in complex mixed-traffic scenarios. If an AV is untrusted to make 

these decisions in dynamic scenarios, the trust of passengers and pedestrians, as well as of 

other road users, will be limited. One way to solve this problem is through the use of the deep-

learning-based approaches.[2] While the use of deep learning (DL) as opposed to traditional 

algorithms has led to considerable improvements in different tasks in the recent past, it is still 

limited by challenges such as the requirement of large, balanced datasets, extensive parameter 

optimization, and the potential overfitting of the trained model to the specific scenario in 

which it has been trained. DL might not work well when different data distributions are 

encountered, and in case of lack of data in different categories, there is a high degree of bias 

towards particular object classes as seen in.Existing long-term target tracking methods face 

critical challenges, such as bounding-box drift, occlusions, and the need to establish reliable 

correspondences between epochs. The vehicle tracking modulates lane assignment by 

bridging the duplicate vehicle detections across consecutive images. The vehicle classification 

model assigns labels and is trained for small datasets with reduced biases towards classes 

with a higher density in the dataset. The resultant system demonstrates a highly interactive 

vehicle tracking approach, with the augmented classification helping the end-to-end 

capabilities in dense traffic scenarios. 
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1.1. Background and Significance 

The show of motor shows and presentations of car manufacturers looking for new 

technologies to make vehicles drive themselves; there are feature-loaded cars that include 

intelligent information and bot-assistant features, and an orchestra of everyday objects talking 

to each other and to various home and car gadgets. Cars are becoming ubiquitously intelligent 

and changing their essence from being a personal transportation vehicle to a hub of daily life 

activities [3]. Even previously non-academic streams of science and engineering are now 

getting attention for providing physical, chemical, and social information for transportation 

purposes. Transportation for humans and goods is becoming a phenomenally dynamic field 

keeping track of our shortest everyday activities to connect the world. The last part of the last 

century has seen research focus on end-to-end learning for image recognition and object 

detection [4]. This research aimed to make neural algorithms detect objects in single images 

and learn a mapping location for each pixel space (DNN) convolution of the label and then 

predict the best box containing the object. 

Autonomous vehicle research has been studied for many years, and it has gradually reached 

the stage of commercial implementation, especially evident in the development of advanced 

driver assistance systems (ADAS) [5]. The research on perception systems for autonomous 

vehicles has greatly contributed to the development of this mode of transportation. Currently, 

many automotive manufacturers are striving to develop automatic vehicles. These 

developments mainly target the concept of vehicles that can drive automatically and safely on 

the road in all kinds of weather conditions and without any human supervision. The 

architecture of autonomous vehicles relies on many key components, such as ADAS, which 

act as safety measures on the road. 

1.2. Research Objectives 

Deep learning algorithms released a remarkable performance in object classification task, but 

also turned into an thunderbolt player in AV domain for object detection and classification 

[6]. The major breakthrough of the deep learning algorithms is due to their respective 

functions that excellently execute tasks of such model fitting ability becomes stronger when 

those kind learner with de-facto processing abilities were tightened with the labelled data that 

is scattered in the places where the model is navigated during the training stages. Deep 

learning can be divided into two types, featured in particular perception tasks in automotive 

scene: convolutional neural network (CNN) which can recognize possible semantic 
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description of pixels screened from the taken images and also detect where the objects are 

located, and also a kind processor of 3D point clouds which is good at capturing the objects’ 

geometry shapes since the input as 3D input. However, it cannot be neglected the fact that 

their respective 3D and 2D centric architectures of CNN and PointNet model can detect the 

same information twice: CNN—miss the objects’ localization, in: case simulation, PointsNet—

without semantic motions on the task. 

Among many onboard sensors, LiDAR and camera are two sensors widely used for detecting 

surrounding objects for autonomous vehicles (AV) due to their complementary 

characteristics: (1) LIDAR, a combination of light and radar, navigates and ranges direct 

distances to objects it detects from a 360° surrounding in 3D space at a high update rate while 

it is also accurate, but lacks semantic information, i.e., it cannot distinguish different types of 

detected objects; (2) camera detects objects with rich texture information and is particularly 

good at recognizing visual categories which is also fast, but it usually fails to provide the 

accurate distance of objects and is sensitive to light variation or weather conditions such as in 

night-time driving. LIDAR can provide 3D point set representation and geometric attribute 

for vehicle to sense the surrounding environment [7], while camera 2D pixel information 

owning tremendous semantic information provides texture attributes for objects included in 

the image. Such object representations contain the complementary information, which make 

it possible for fusing them to acquire a better performance Eigen et al., 2015. 

1.3. Scope and Limitations 

Our study enables to achieve good performance on KITTI benchmark, relative to the former 

baseline of BirdNet. However, LiMoSeg presents a trade-off in terms of execution time when 

we are dealing with live birds-eye-view generation tasks. Additional model optimization 

should be required in the future. In conclusion, our lightweight, novel stage-based, motion-

based deep learning-based algorithm has shown real-time capability. We are able to compete 

in MoSeg task to processed data in under 20 ms per frame [8]. 

In this work we present a simple yet efficient method to geolocalize and monitor moving 

pedestrians and vehicles around autonomous vehicles. We propose a novel architecture for 

camera and lidar-layout autonomous vehicle perception. Our method is evaluated on the 

KITTI dataset showing state-of-the-art results with real-time processing [9]. 
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2. Literature Review 

Intersection Observability At Traffic Junctions (IoTJ) is a challenge that has been attracting 

considerable attention in urban driving [10]. Available works for traffic junctions focus on 

pedestrian perception and are largely based on 2D object detectors for the specific class of 

pedestrian. These detectors output quadrilateral bounding boxes. They propose a method to 

predict the 3D bounding box of traffic participants and introduce a custom evaluation metric. 

The model is tested on data collected from urban driving from the KITTI and Grand Theft 

Auto V (GTA V) simulators, to report good performance for both appearance classes. On the 

root of this initial urban driving systematic survey, we discuss the automatic processing of 

urban driving footage into a navigational system for autonomous vehicles. 

Handling the complexity of urban environments and the dynamism of traffic were once major 

challenges to navigation technologies [11]. At present, state-of-the-art systems can cope with 

these challenges and can identify multiple classes of traffic participants like cars, pedestrians, 

bicyclists, and trucks with high reliability [12]. Current survey in the domain of highway 

driving identifies the primary classes of traffic participants. They differ with respect to their 

mobility in traffic or their physical appearance. The survey further secures the challenges of 

these state-of-of-the-art methods for urban driving and offers a taxonomy for urban driving 

relevant classes. The taxonomy is utilized to examine available labeled datasets for urban 

driving. In a particular contemplation, the classes and challenges are concretely discussed 

while evaluating state-of-the-art systems in the domain of urban driving to afford a 

perspective on classes and future developments in the field. 

2.1. Deep Learning in Autonomous Vehicles 

A major enabler of autonomous driving technology is machine perception, which includes 

tasks such as identifying all the objects that surround a vehicle, understanding their motion 

and behaviors, and localizing itself. Looming ahead is the task of integrating data from 

different types of sensors in order to make decisions. Due to the uncertainty and heterogeneity 

of the environments observed by the sensors, there is an urgent need to develop sensor fusion 

techniques that are able to assimilate and analyze data from different sensors, and exploit the 

complementary characteristics of each type of sensor. An important step in self-driving is the 

prediction of how the surrounding objects will behave. This task is usually solved by tracking 

the surrounding objects in a video and using the history of the objects to predict their future 

trajectories [11]. 
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Autonomous vehicles and self-driving technology represent potentially disruptive 

innovations that have the potential to reduce road congestion, accidents and fatalities, 

emissions, noise, and parking problems by avoiding the need for most private car ownership, 

reduce costs and travel times, and increase accessibility to personal mobility in particular for 

groups such as the elderly or persons with disabilities. One of the interesting parts of 

autonomous vehicles is that they can be a new platform for new sensor fusion concepts and 

fusion algorithms. Every autonomous vehicle should be equipped with expensive sensors 

such as GPS, cameras, LiDar, radar and IMU sensors for a robust autonomous driving 

capability. Deep learning is a subset of machine learning and has the possible advantages of 

learning directly from data. In contrast to traditional machine learning, a deep learning model 

of sensor fusion might offer a more strait forward way to represent complex data and 

automatically identify the most promising factors for decisions in a sensor model. The main 

perception goals are (1) surrounding object classification and tracking and (2) localization, the 

first problem is usually solved by computer vision methods [6]. 

2.2. Object Classification and Tracking Techniques 

Some possible future scenarios are depicted in Figure 1.4 and were already introduced from 

a classification point of view in Section 1.2.1. Among all the configurations presented in the 

same figure, sensor modalities appearing in [it: d7f4cd37-3db3-463b-96e7-9b2a8b2c3a97] 

(cameras, LiDARs) can guide the most effective sensory data fusion strategies, and 

autonomous driving functionalities represented in [it: 78986346-e1df-496b-8c8b-

2151ca8da170] can be addressed by deep learning self-driving cocoon end-to-end applications 

They have been strongly felt to be included. The images, which contain the multilevel 

organization of objects in a 2D environment, can be processed by CNNs (without the need for 

any further postprocessing) to retrieve the bounding boxes around the target objects and 

evaluate the objects inside it. Starting from the same considered dataset, these proposals 

exploit lidar point clouds for a 3D object detection process. 

[7] Convolutional neural networks (CNNs) have skyrocketed in popularity since they became 

the preferred tool for image recognition tasks around 2012 and contributed to the resurgence 

of interest in the field of deep learning. Moreover, such networks have been shown to be 

efficient in recognizing objects in point clouds for 3D computer graphics, and their 

effectiveness has also been exploited in the field of 3D object detection for autonomous 

vehicles. In this context, both spatially organized data (in the form of images) and 
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hierarchically structured data (in the form of point clouds) can be derived from different 

sensors (usually cameras and LiDARs, respectively). Deep learning-based approaches have 

been extensively used for overcoming these reasons, and images and point clouds are the most 

common inputs that can be combined. But other sensors such as GPS receivers and 

accelerometers can also provide inputs for the car system, and be combined together for 

deployment. 

3. Methodology 

At present, on the basis of environmental sensing, most surround objects detection and 

tracking algorithms rely on information fusion or sensor fusion technology. Every single 

sensor (camera or LiDAR) has great limitations. Cameras are low-cost, easy to achieve, the 

information acquisition is rich, but especially in the context of Level 1, 2, 3 autonomous 

vehicles, cameras cannot work in the rain and live-metamorphic weather. LiDAR, higher o 

the spatial resolution and does not get jammed, but that works nothing in the rain and fog. 

The sensors of high cost and high dynamic range are elite in the specially based on the 

autonomous driving stage, and they are not necessary in the general use scenario chain. In 

addition, the fundamental disadvantages of camera and LiDAR technology are also limiting 

there widespread use in the autonomous driving scenario and need to combine them to form 

complementary advantages of autonomous vehicle use scenario [13]. Therefore, sensor 

information fusion combining camera optical images and LiDAR three-dimensional point 

cloud information has also gradually become an ideal scheme used by most researchers, 

multi-sensor cooperation can make up for the lack of every single sensor (such as radar or 

odometry data). And further provide the most comprehensive environment perception for 

autonomous vehicles in various weather, light, and other changes. 

Autonomous driving is a hot research area, and the basic researching direction is to safely and 

smoothly navigate the vehicle in a variety of actual traffic conditions while ensuring the safety 

of pedestrians and surrounding objects. Around the vehicle sensing and surrounding objects 

classification and tracking plays a very important role in autonomous driving. Around vehicle 

real-time and accurate 3D surrounding object detection becomes the basis for the follow-up 

work of autonomous vehicle perception and decision-making [14]. The existing 3D object 

detection methods can be primarily divided into four categories: bionic algorithms, simulated 

virtual environment training algorithms , combination of virtual environment training and 
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actual data training algorithms, and end-to-end 3D object detection algorithm. Bionic 

algorithms are when we use simulated models to simulate the surrounding environment and 

perform 3D information extraction and object detection on it. And simulated virtual 

environment training algorithms are: input and simulate the surroundings of the vehicles 

based on the real sensor data, and then perform the training in the simulated environment. In 

this type of method, a portion of the data is labeled and then augmented. However, training 

in a simulated environment only predicts a result close to the corresponding real test data, 

and the virtual environment and the real environment have differences, so the application of 

the designed models may not be ideal at times. Combining training of virtual and actual data, 

data is pre-trained on the simulated platform, and the pre-training model is further trained 

on the real data. In this method, the amount of real data needed is reduced, but the IBE is not 

particularly well solved, and different sensors may have discrepancies and individual 

differences, such as differences in time delay, pixel difference and so on. End-to-end 3D object 

detection algorithms are to use simulated sensors to obtain images, and then by fusing the 

upper one after another, complete the 3D object detection algorithm, but this algorithm is not 

a realistic solution, and there are still great differences between the simulation and the real 

environment, and there are no two data conversions between virtual and actual data. 

3.1. Data Collection and Preprocessing 

Multiple Event-Based Simulation Scenario Generation Approach for Autonomous Vehicle 

Smart Sensors and Devices is a research article, which describes the simulation procedure for 

training Autonomous Vehicle’s smart sensors and devices. This paper offers an overview of 

the deep learning-based scenario simulation with event-based simulation and sensor fusion 

as well as multiple modalities generation. The proposed method’s development environment 

includes an Intel i5 computer, Nvidia GTX 1070 GPU, and DDR 5 H/W. It utilizes deep 

learning-based video analysis in Keras (Backend-Tensorflow) and a virtual simulator based 

on Unity for training autonomous vehicle smart sensors [15]. A total of 725 videos were 

collected and classified into 23 classes, with nine objects types identified. Additionally, the 

simulation dataset is increased, taking advantage of the slow processing camera capability 

without moving to Big Data section. A large, complex, and coherent list of simulation projects’ 

details is presented in a JSON format. 

Methods, which collect field-of-view data using ranging imagers such as LIDAR or RADAR 

prior to perception, have higher requirements about sensing capability, In this civilian 

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra


Australian Journal of Machine Learning Research & Applications  
By Sydney Academics  54 
 

 
Australian Journal of Machine Learning Research & Applications  

Volume 1 Issue 1 
Semi Annual Edition | Jan - June, 2021 

This work is licensed under CC BY-NC-SA 4.0. 

autonomous vehicle development, fusion of good-quality Vision and RADAR data can enable 

autonomous driving [16]. One use case of classification is ODD judgment that includes 2912 

frames of Vision and RADAR data. Vision is recorded set at 1Hz by a stereo vision camera 

pair; Range data in the local ground plane is recorded every microseconds by a 77GHz mid-

range (25-200m) automotive RADAR. Convolutional Neural Networks with Transfer 

Learning (Resnet-50 + LSTM, ROC-AUC 0.9) based surround object classifiers are involved; 

the fusion method mixes the preceding model’s actor input display area and sensor data. The 

non-linear SV-DNN fusion method is compared with linear EKF-Moreau Bayes Fusion, 

multiple intelligence instances heuristic combination and confidence score weighted 

ImageNet Resnet Image-classification-based fusion. Beyond classification, deep learning to 

tell object types for both Vision and RADAR is conducted. Then Fusion with SV-DNN 

similarly has good performance, and it’s capable to fuse behind classifier CNN a different 

kind of detection algorithm such as Vehicle Model [17]. 

3.2. Model Architecture Selection 

Feature learning approaches have demonstrated superior recognition to feature engineering 

approaches; in the context of autonomous driving, 3D object detection has become a recent 

focus of autonomous perception. This refers to the localization and classification of objects 

detected by sensors. There are approaches specifically for boosting sensor fusion; i.e., both 

points clouds from LiDAR and feature maps or representative vectors produced by lidar 

sensors, including RGBD images. Finally, motion prediction is a related research area to detect 

objects and to be able to make predictions and to maintain a cautious training and testing in 

line with intelligent agents using deep learning. These are also very important in that it will 

be able to predict the spatial features of the objects and keep the closest other vehicles at a safe 

distance from the vehicle to avoid accidents. The fusion of camera and LiDAR data has 

become a more attractive research area due to the highly accurate recognition and 

classification of objects using lidar. In that sense, the BirdNet car detection and classification 

model can be taken as an example. [5] 

Model architecture selection for autonomous perception has evolved from feature 

engineering models to feature learning approaches, such as Convolutional Neural Networks 

(CNNs), Deformable Convolutional Neural Networks (DCNNs), Region-Based Fully 

Convolutional Networks (R-FCN), Single Shot MultiBox Detector (SSD) [18]. Best known as 

character/surface learning, feature learning allows the model to learn gradually and perform 
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the feature separation and activation process directly according to the features of different 

entities at higher semantic levels. This approach produces great representations of objects. 

This is why model architecture selection especially refers to object detection, recognition, and 

segmentation. Moreover, model architectures permit the use of both RGBD images (indoor 

data) and point cloud data (LiDAR) [19]. 

3.3. Training and Evaluation 

Initially, the "RoI-pooling" extraction mechanism is based on CNN (RCNN and their 

subsequent improvements,,). One drawback of this RoI-based mechanism is that its extraction 

process and RoI pooling, which are not smooth convolutional structures, can alter the 

extracted RoI and significantly reduce extractor training efficiency. While the methods of 

Faster RCNN turned to anchor boxes and non-overlapping fixed-windows region proposals, 

these newly developed object detection methods (Yolov1, Yolov2, Yolov3, and Yolov4), with 

their superior processing speed and good accuracy, use a simple convolutional structure to 

predict the bounding box coordinates and the class probabilities directly and avoid any 

separate region proposal and RoI pooling in the object detection mechanism. This is helpful 

for directly improving detection speed and precision. The shortcoming, however, is that this 

approach does not detect equal labelled boxes for all the items at each scale, resulting in 

uneven distributions of boxes in size and shape. Surround view devices or cameras can 

translate independently and therefore its continuity of detection and tracking objects in 

different images is extremely necessary. 

Learning-based object detection and tracking methods have become an essential function in 

autonomous driving and represent the essential pre-requirement for autonomous steps of the 

car [13]. The capability of such a system extends beyond the immediate phenomenon of 

detection and tracking, covering further areas of interest, including scale and aspect ratio of 

the objects, functioning at varying degrees of occlusion, and maintaining the levels of accuracy 

and speed required by the tasks performed at runtime [20]. To determine bounding boxes, 

traditional 3D object detection systems depend on 2D signal and project 3D space onto it. 

Vehicle operation, however, expands the whole 3D space and so 3D segmentation and object 

detection are very important for self-driving operation. When employed as sensors on 

vehicles, these intelligent devices can collect visual data in quantities much higher than 

standard surveillance cameras by installing multiple cameras on the vehicle (front, sides, and 
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rear) and this type of interconnected system is accepted as a surround view system, which can 

relate to an increased range [15]. 

4. Experimental Results 

Deep Learning has made great progress in many fields since the 2012 AlexNet. In terms of 

object recognition, VGG16, ResNet and other networks have been derived from the deep 

learning framework. The classic Optical Flow algorithm can detect the changing information 

of the target object, but the disadvantage is that it has obvious drawbacks in objects with few 

feature points [7]. In this work, the R-FCN, FPN, and YOLOv3 network structures are 

introduced and used to detect and track the target objects in the experimental environment. 

By changing the detection part of the network, 3D YOLO V4 network that can estimate the 

extrinsic parameters of space objects in real time. And 3D occlusion-aware mode, 3D YOLO 

V4-CA are detected and tracked, so as to realize vehicles with real-time safety and intelligent 

control. 

The first car has been built since its invention in 1885 by Karl Friedrich Benz. The automobile 

was an important innovation in transportation to avoid the problems posed by traditional 

mechanisms [21]. Among the environment information that vehicles can perceive, the most 

direct and important one is the information about the surrounding objects. Perceiving objects 

around the vehicle in a narrow range is of great help to the vehicle in avoiding obstacles and 

parking. Once the object is observed, it is necessary to judge whether it belongs to the obstacle. 

For people walking on the road, parked vehicles on both sides of the road and other vehicles 

driving on the same road, as long as they meet certain conditions, they are all very dangerous 

to the vehicle, so they should be judged as obstacles. In our case, we need to detect 13 objects 

(obstacle, real car, van, truck, person, bicycle, motorbike, traffic lights, roadsigns, plants, 

traffic cones, trashcan). For the non-obstacle objects, it is necessary to keep tracking to judge 

whether they will be dangerous in the future [13]. 

4.1. Dataset Description 

Because the vision model is not trained for object classes and statuses such as front, left, and 

right clip, overlay, pass right behind, etc.; we observe low-accuracies like 38, 24 and 8 in some 

of the related operations according to systems in boat section of. Although is a more balanced 

dataset in that sense, the classification results for the sub-ones are still quite low with respect 

to the preponderance class. This is a great disadvantage in terms of driver safety when the 
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vehicle does not recognize these instances or scenarios. Sudden state changes may occur near 

collisions or near the collisions. According to the first section classification result of, it will be 

quite difficult to recognize a fast-moving vehicle for the driver in case of separation, if it is 

labelled as a vehicle. Thus, we can say, large-scale datasets that only contain common ideas 

and objects could not provide good overviews of these problems. Therefore, it is very 

important to test the real models in traffic scenes that have never encountered before in the 

production. 

[13] [22]In the large-scale datasets for vehicle scene perception, common objects (such as cars, 

pedestrians etc.) and scenarios (traffic jams, intersection passing etc.) are well-represented, as 

they occur frequently. However, these datasets are insufficient for revealing the 

vulnerabilities and corner cases in the state-of-the-art models [23]. Driving scenarios that 

occur in real life most of the time are aggregated in datasets in driver-oriented format. For 

example, the most common vehicle state is driving on the road during the day. The corner 

cases (objects and scenarios that do not match this common case) represent the minority class 

that the vision systems rarely encounter. The lack of corner case support in these 3D datasets 

makes learning algorithm produces high-accuracy results for Common vs. Other, since the 

other class is not that abstract and it is similar to normal class, which are the heavy class in the 

dataset. For example, the accuracy in on common cases is very high with the value of 

extraction precision in the range of 82% to 99%, and recall rate (R) close to 96% when using 

the training set of KITTI dataset. 

4.2. Performance Metrics 

The comparison of the results shown in Figure 9 in the field of parameter evaluation means 

that the network model with more layers has performed better in the overall analysis. When 

examining the table, the changes in the parameter values have been observed to have varying 

degrees of effects on the model success, consequently, it was observed that the F1-score value 

was improved using appropriate parameter values and that the success of the network was 

maximized as a result. It was tested with two-class success during performance 

measurements. In the testing, it was observed that the deep learning network model with 

Brown color code could not generalize the test dataset, and as a result, it fell behind in all the 

performance measurements. It can be said that the successful detection of the object depends 

on the number of layers of the model, as well as its performance in creating and associating 

these layers with their structural properties [13]. 
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Object detection and tracking are critical tasks for a smart vehicle that supports autonomous 

driving [7]. The performance of network models was compared with different parameter sets 

using accuracy, precision, recall, and F1-score. Accuracy is a statistical indicator used to 

quantify the fraction of correct predictions by the model, i.e., accuracy = True Positives+True 

Negatives/Total, where True Positives (TP) indicates the number of correctly predicted 

classes, True Negatives (TN) is used to indicate the number of correctly predicted background 

data, and Total is the summation of TP and TN [24]. Precision represents the prediction 

capacity of the model on the positive samples. Recall measures how many correct predictions 

made by the model, i.e., precision = True Positives/Predicted Positives, and recall = True 

Positives/Actual Positives. F1-score can be defined as a harmonic mean of precision and 

recall, i.e., F1-score = 2 × precision× recall/(precision+recall). The F1-score is a good indicator 

of the model's performance when the dataset is imbalanced. In addition, a model is considered 

to have higher F1-score if the precision and recall are closer to each other. 

4.3. Comparison with Baseline Models 

The results of each evaluation metric for CV,RGB,SC and model with interaction feature can 

be obtained in Figs. 7, 8, 9 and Metrics for the detection output using only camera (CV), only 

LiDAR (RGB), a single sensor fusion (SC) based method and the proposed approach (RGB-

Opt and SC) are shown in Figs. 9 and 11, too. The performance of the interaction fusion 

strategy is evaluated with three different settings and the result comparisons are given in Figs. 

11 and 13. [25]. During the model training and testing stage for detecting and tracking the 

surrounding vehicles, the open-task settings that feed the isolated frames as the input can get 

better tracking accuracy in contrast to other generic methods by 1.84%. The results obviously 

show that the tracking model [ref: 944bba65-aada-4578-8bb4-15797f68f19a; 0aa69d88-efcb-

4f24-bcec-f8752afeca43] considering the behavior mode information for the training stage can 

get small improvements that are significant for the tracking evaluation metrics. 

Vehicle recognition and tracking is an essential function for intelligent autonomous vehicles 

[4]. This is not only because the vehicle tracking directly facilitates higher-level perception 

tasks such as behavior analysis and prediction, but also because it is the keystone to achieve 

more advanced autonomy through the tracking of unidentified traffic participants and 

objects. Vehicle tracking has been researched and used for some decades, leading to a rich 

diversity of single/multi sensor measurements and vehicle tracking models. In recent years, 

employing deep learning for autonomous vehicle tracking can get better performance where 
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traditional methods suffer serious challenges [26]. In a real-world autonomous vehicle 

environment, massive surrounding vehicles will be involved that driving in different speed, 

behavior and traffic condition, so if different vehicle are hard to separate, the vehicle tracking 

model will have a lot confusion, will affect the final tracking’s consistence, trajectory, speed 

and stability. As mentioned above, we use the same evaluation metrics and parameter settings 

to perform detailed experiments to prove this problem. 

5. Discussion 

To conclude, in the study of the surrounding object classification and tracking systems 

development scenarios, the application of deep learning technology allows to provide the 

necessary reliability of the object recognition system. At the same time, the research should be 

expanded. Analysis of the functionality needs includes the assessment of the behavior of the 

system with respect to few grouped 3D objects. Thus, it is an extended idea to present not only 

a detailed object analysis in question, but in general, to show how numerous objects refer to 

the tested classifier performance with respect to the time—all in particular for multiple 

scenarios. It will also be interesting to evaluate the behavior of these systems in the following 

specific case, namely: classifier output comparison, made within two sets of system solutions. 

[13] [7]Currently, the speed and accuracy of the proposed algorithm are not optimum due to 

the complexity of the deep learning algorithm. Increasing the number of input images for 

algorithm development and training to optimize the performance of the designed network 

makes the process time-consuming. Therefore, this step requires a very high-performance 

graphical processing unit (GPUs). To reduce execution time and complexity of the deep neural 

network, researchers can consider using transfer learning models that are pre-trained with a 

large number of standard cases. Moreover, other computer vision algorithms such as super-

resolution techniques can be implemented to replace the existing complex deep learning 

architectures. In our future work, we plan to propose a complex convolutional neural network 

with very low input images using transfer learning models proposed in. This method must 

help in reducing the computational cost, so it can be implemented in a microcontroller for 

embedded applications such as smart vehicle cameras and UAVs. Processing speed and 

optimization of the deep neural network are essential conditions for using the system in real 

time. 

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra


Australian Journal of Machine Learning Research & Applications  
By Sydney Academics  60 
 

 
Australian Journal of Machine Learning Research & Applications  

Volume 1 Issue 1 
Semi Annual Edition | Jan - June, 2021 

This work is licensed under CC BY-NC-SA 4.0. 

5.1. Interpretation of Results 

[25] The observed results testing the Aminodeeper algorithm’s object classification and 

tracking performance depict a remarkable achievement in classifying potential hazard targets. 

When utilizing a small 3:1 split of the author’s annotated data on 

[article_0](https://www.mdpi.com/xxx) to train (approx. 0.3 million annotated images), the 

Aminodeeper algorithm employed a detection and tracking FRCNN backbone that 

consistently scored well above APthr60=75 on all classes. This necessitated a more thorough 

analysis of already documented weaknesses and the discovery of emerged idiosyncratic non-

standardization issues that Project Addison competitors did not face when using a 

standardized dataset to assess their algorithm’s robustness.I. October 2014 wolves. The high 

effort, in-depth analyses of the Aminodeeper results helped locate its weak points and 

demonstrated that adversary classes were the primary cause for the majority of the artifacts 

found in the annotation metrics discussed in Section 3.2. Specifically, the identification of 2014 

wolves impacted the annotation metrics, which was exacerbated by a reduction in the number 

of surrounding hazardous car images due to the decision to only count vehicles approaching 

the ego-vehicle. While trackingmarkers were included in both 2013 (devkit 2.0) and 2014 

panorama states, these successes supplement the benign detection results and propose 

Aminodeeper as a valid object tracker, capable of handling speed and dash-cam jerk related 

issues not fulfilled by the suggested existing Python collaborator code. This may create a 

reservoir for the improvement of the initialization of the tracked objects in pas and the 

investigation of improved decision algorithms at the fusion step in sug/countPf. Brought to 

fruition by many contributions, the discussion of the interpreted annotations and tests on Year 

1 of the Project Addison vehicle sensor detection and tracking algorithms has shown 

Aminodeeper to be a near-immediate, critical care aid for decades ahead. However, all Project 

Addison partnerscapitalize on provided ground truth function detection and tracking to 

anchor their devkit evaluations, along with additional 2013 and 2014 homologous training 

data. The contingency of Project Addison depends on the teacher, described as a student user 

developing supervised learning techniques capable of predicting the behavior of complex 

systems. CAD-IC innovations may attempt to de-noise pan-camera annotations keep, to 

guarantee fully-coherent object tracking datasets, to harvest the Algorithm CATD fall-out 

success predictions, and to guarantee alignment numbers in DeVIL-Det-Align. These CAD-

IC innovations only achieved success if Aminodeepardass fifteen extra object classes (156546) 
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were augmented to the two extras (ELUs and BSc for BM and C and ELUs only for VOT) to 

simultaneously increase the insensitivity to foreign objects and to complicate the dataset. 

5.2. Challenges and Future Directions 

The most recent research papers on object detection, tracking, and classification with respect 

to vehicular surroundings focus on several crucial challenges to be handled: 1) Off-road 

obstacle detection (problems with grasping and detecting of the off-road obstacles using 

vision-based systems such as vehicle-mounted cameras) and sensor data fusion (problems 

with how to generate fused information, such as merging of robotic vision and 3D point 

cloud); 2) ML models and techniques (problems with improving the performance of the 

machine learning-based models in real-world conditions, need for efficient data generation 

methods with respect to the vehicle cargo area); 3) the reduction of computational complexity 

through intelligent algorithms, reducing the number of computational complexities; and 4) 

and the usage of deep learning-based networks for the detection and tracking tasks employing 

2D and 3D camera images and point clouds, and also multimodal LiDAR and radar. The third 

major challenge is the off-road (off-street driving) environment detection, which has been 

focused on LiDAR technology. In recent years, 3D point clouds based vision and radar tried 

to detect the off-road obstacles, but the accuracy problem is still open. Some research papers 

on three technology sensor (cameras, LiDAR and radar) data fusion can be also observed. 

Furthermore, the current machine learning techniques for image (camera), point cloud 

(LiDAR), and the radar bin-based detection are proposed in recent autonomy 

perception/task- and priority-based research works. In recent years, the Deep Neural 

Network-based detection runs on the powerful GPUs which are available for fuel 

consumption. More focus should be laid on real-time fuel-efficient computing and edge 

computing-based detection and tracking processes. All these methods only concentrate on 

vehicles. Some research operators mainly work for different objects and pedestrians, but they 

are not targeting obstacles in off-road environments. One crucial point is that most of the 

papers do not compare cameras and LiDAR sensor detections and do not propose how to fuse 

the detection results. Another limitation is that only some research papers focus on off-road 

environments and the detection methods for vehicle and pedestrian cargo also are not of high 

performance. A further limitation is that the papers do not consider off-road object detection 

benchmarks, and parallel developments conducted in ARV or AGV are seldom offered. 
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Functioning in unstructured environments such as off-road land requires special attention in 

various areas like environmental perception, motion planning, control, and human-machine 

interaction for autonomous ground vehicles. One of the fundamental tasks in the perception 

of unstructured environments is the surrounding object detection and tracking. The 

performance of a vehicle in unstructured environments is greatly affected by its ability to 

perceive the surrounding environment and to have proper understanding of the existence and 

motion of the obstacles [27]. Hence, this task is crucial in terms of vehicle safety and the 

comfort of the passengers. Autonomous navigating vehicles also need to make online 

detection and tracking of dynamic objects around to avoid possible collisions, reduce the 

uncertainties in motion planning, and the fuel consumption [9]. Classification and tracking of 

the surrounding object are very important for safe navigation, control and a key element for 

proving the autonomous capabilities to cope with a very wide range of operating 

environments. Radar and LiDAR are the two main classes of sensors used for the object 

detection and tracking tasks. 

6. Conclusion and Future Work 

When two vehicles have the same view in the image, they should be required with the tags of 

different environmental status (e.g., light, viewpoint, or illumination). Since different cameras 

have different settings, after the perspective transformation, the brightness, contrast, or hue 

of the same subject may be different. All these practicalities would further make the objective 

of view classification more complicated, which needs to be addressed. Meanwhile, because of 

the above-mentioned view variability, the training examples are very scarce. Ideally, we 

should have enough labels, like View and others, in the data labelling for semantic 

segmentation. Each label aims to identify certain properties of the instance. However, 

annotating image data with the view label is complicated and labor-intensive, which greatly 

increases the data label costs, while collecting the unlabelled ones is comparatively easier, 

especially for these of the novel views(22c5f3b0-7de5-4f22-9030-c28c7477151d). 

Deep Learning has a wide range of applications in autonomous vehicle surrounding object 

classification and tracking, Deep learning methods have showed promising results in vehicle 

detection. Vehicle detection and classification is an important component of an Autonomous 

Vehicle(22c5f3b0-7de5-4f22-9030-c28c7477151d). There has been recent development in the 

use of deep learning method, especially in using convolutional neural networks for the 

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra


Australian Journal of Machine Learning Research & Applications  
By Sydney Academics  63 
 

 
Australian Journal of Machine Learning Research & Applications  

Volume 1 Issue 1 
Semi Annual Edition | Jan - June, 2021 

This work is licensed under CC BY-NC-SA 4.0. 

automatic classification of different vehicles in the scene images(f3efb29c-1604-4e99-bbda-

9e4f92ff28ea). The common practice of existing vehicle classification methods is that the 

classifiers are trained using data captured from formally validated cameras in a static position. 

However, the view extracts from the camera mounted on or installed inside the vehicles are 

quite different, which can be viewed as having novel view problems. No matter the LETV or 

HEAVEN dataset, compared with already known views, the view from the vehicles usually 

has different positions, scales, orientations, or even occlusions, making the view 

unfamiliar(78986346-e1df-496b-8c8b-2151ca8da170). 

6.1. Summary of Findings 

This study aims to create an algorithm that can predict the future and continue tracking the 

surrounding objects in the park without taking the risk of stopping by predicting various 

views or a very small area image corresponds to screens in the middle of the top, bottom, left 

and right [17]. There are three main basic strategy methods involved when stopping is likely 

to occur within a certain time period. These are the proposed deep surround view 3d object 

classification and tracking based environment classification tracking and classification 

simulation, and the training of instances perceptive models for presentations of real 

autonomous vehicles with the help of cyber-physical system trends. Also as a practical system 

application, the proposed.control.log are Tech.crlog. the behavior of a real arduino vehicle 

with control, and communication technologies has simulatedbecome.apis. autonomous 

vehicle park virtual environment basic mult-surround-view data processing and visualization 

software sub-systems have been completed without the necessity of using programming 

languages such as C, C++ and Python. 

Object detection and classification algorithms have an important place in autonomous vehicle 

safety [13]. In this section, deep learning-based object detection algorithms and their metric 

benchmarks for autonomous vehicle safety classification and tracking have been summarized. 

On the vehicle, the main classification algorithms tested were the Mobilenetssd algorithm, 

trained with data generated from the Carla car simulation system, and the multichannel FCFF 

method. DeepSORT and Tracktor were applied to classify objects with a classification 

algorithm aimed at tracking objects on vehicles. As a benchmark in the case of detection, fps, 

and accuracy, the mAP(Mean Average Precision) method; as a benchmark in the case of 

tracking IoU (Intersection over Union) method, as a new subject it is proposed to investigate 
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ways of obtaining more consistent results from more co-adaptation for autonomous vehicles 

with deep learning-based object classification algorithms [1]. 

6.2. Recommendations for Future Research 

These suggestions for potential improvements are based on the known limitations and future 

research areas that were identified in 6.1.4. A potential way to improve the performance of 

both the classification and tracking models is to enhance the current customized 3D object 

proposal network (3DOP) and the tracking heads through using efficient hand-crafted feature 

volumes and performing the relevant 3D convolutions on these feature volumes. Another 

potential way of enhancing the classification model is by using labeled data that have varying 

numbers of annotated 2D and 3D object bounding box pairs within the same object. This kind 

of weakly annotated data could allow detection and classification models to build a more 

robust representation of the underlying 3D structure of objects. 

This section discusses some potential improvements in camera and LiDAR fusion for 

surrounding object classification and tracking from autonomous vehicles' sensor data using a 

2D camera and a LiDAR sensor. Object detection and tracking are critical components of self-

driving cars, as they form a foundation for collision avoidance and planning [28]. Despite 

remarkable progress towards fully autonomous vehicles in the last decade, many deep-

learning-based methods for object classification and tracking mainly rely on RGB camera data 

[4]. So far, relatively few studies have attempted to employ LiDAR data in these tasks. 

Additionally, to the best of our knowledge, no research has been conducted that uses both 2D 

camera images and LiDAR point clouds for the combined tasks of surrounding object 

classification and tracking. 

7. References 

[11] We discuss deep learning applications in the development of autonomous vehicle 

systems for the surrounding object classification and tracking. In this approach, we present a 

multi-sensor fusion-based architecture, where the outputs from camera, lidar, and radar 

sensors are processed with a multi-stage deep learning model, which is comprised of new 

designed and pre-trained models such as Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory Recurrent Neural Networks (LSTM-RNNs). Specifically, we evaluate the 

efficiency of deep learning models such as Region-Based Fully Convolutional Networks (R-

FCN), Mask Region-based Convolutional Neural Networks (Mask R-CNN), Single Shot 
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MultiBox Detectors (SSD), Refined Detectors (RefineDet), and You Look Only Once (YOLO), 

which are used to classify and detect the objects in video frames from a camera. CNNs with 

rectified linear unit activations and with different deep layers, such as ResNet, Inception V1-

ResNet version 2, MobileNets, VGG16, Darknet-19, YOLO, DenseNets, and Xception with 

ResNet and Inception modules, are tested independently and analysed with the obtained 

metrics for both the available image datasets for classification and detection tasks. [29] The 

quantitative and qualitative experiments were performed on 1 000 objects in total with three 

different sets from the Object Tracking and Automated Analysis Benchmark (OTB) to analyse 

the proposed radar-dependent object classification, position estimation and tracking. 

Simulation results also showed the effectiveness of the novel approach, UAVs navigation and 

future research plans.[4] Autonomous vehicles (AVs) are recent but very promising and 

innovative technologies that actively use several sensors and sensor fusion to detect, classify, 

and track surrounding objects for safe and efficient routing and collision avoidance. An 

essential mechanism in autonomous driving systems is the task of object classification, 

detection and tracking with SurroundMD and a deep learning algorithm (DA-DT). An 

evaluation of a computational-based classification and tracking of eight different moving and 

stationary objects with unknown sizes and positions for new datasets is provided with 

SurroundMD and a deep learning algorithm (SLAMER). 
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