
Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 301

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Resilience Engineering in Container Orchestration: Managing Failures
in Distributed Systems

Sandeep Chinamanagonda, Senior Software Engineer at Oracle Cloud infrastructure, USA

Hitesh Allam, Software Engineer at Concor IT, USA

Jayaram Immaneni, SRE Lead at JP Morgan Chase, USA

Abstract:

Resilience engineering in container orchestration focuses on designing systems that anticipate,
withstand, and recover from failures, ensuring reliable performance even in unpredictable
environments. As modern applications increasingly rely on distributed systems, the
complexity of managing these environments has grown significantly. Container orchestration
platforms, like Kubernetes, offer a robust solution for automating containerized application
deployment, scaling, and operations. However, these systems are not immune to failure.
Hardware malfunctions, software bugs, network issues, or unexpected load spikes can all lead
to disruptions. Resilience engineering addresses these challenges by proactively identifying
weaknesses, implementing fail-safe mechanisms, and enhancing system adaptability. This
involves self-healing processes, redundancy, automated rollbacks, and dynamic load
balancing to mitigate risks and reduce downtime. Practical resilience engineering also relies
on thorough monitoring, logging, and real-time analysis to detect anomalies early. By
understanding how failures propagate through a distributed system, teams can design for
graceful degradation rather than catastrophic collapse. A key aspect is fostering a culture
where failure is expected and prepared for, encouraging continuous improvement and
learning from incidents. In container orchestration, resilience is not just about preventing
failure, ensuring rapid recovery, and maintaining service quality. By embracing principles of
resilience engineering, organizations can build more reliable, fault-tolerant distributed
systems, improving customer satisfaction and maintaining business continuity. As technology
landscapes evolve, managing failure efficiently in containerized environments will remain
crucial for organizations seeking to confidently deploy at scale.

Keywords: Resilience Engineering, Container Orchestration, Distributed Systems, Fault
Tolerance, Service Availability, Kubernetes, Tainted Nodes, Node Failure, High Availability,
Microservices, Load Balancing, Auto-Healing, Redundancy, Chaos Engineering, Disaster
Recovery, Node Health Monitoring, Consensus Mechanisms, Scalability, Self-Healing
Systems, Reliability.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 302

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

1. Introduction

Where systems are increasingly complex and distributed, ensuring reliability and
performance in the face of potential failures is more critical than ever. This is where resilience
engineering comes into play. Resilience engineering is the practice of designing systems that
can anticipate, withstand, and recover from failures gracefully. It emphasizes building robust
and adaptive systems that remain reliable even in adverse conditions. The field has its roots
in the study of human factors, safety, and critical infrastructure like aviation and nuclear
plants. Over time, as software systems have grown more intricate and interconnected, the
principles of resilience engineering have found significant relevance in the realm of IT and
cloud-based architectures.

One area where resilience engineering is especially crucial is container orchestration.
Containers have revolutionized how applications are developed, deployed, and managed.
Tools like Kubernetes, Docker Swarm, and Apache Mesos facilitate automated deployment,
scaling, and operation of containerized applications. Yet, the very nature of these distributed
environments means they are vulnerable to a wide range of failures, from hardware
malfunctions to network latency issues. As applications grow in scale and complexity, the
need to engineer systems that can maintain their functionality in the face of inevitable
disruptions becomes imperative.

With the advent of distributed computing, applications are no longer hosted on a single server
but spread across clusters of nodes, data centers, and cloud services. This distribution offers
remarkable benefits such as scalability, flexibility, and redundancy. However, it also increases
the complexity and potential for failures. In such environments, the ability to recover quickly

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 303

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

and continue operating despite partial failures is paramount. This is the essence of resilience
engineering in the context of distributed systems.

1.1 Background on Resilience Engineering

Resilience engineering has its roots in disciplines where failure can have severe consequences,
such as aerospace, healthcare, and nuclear energy. Historically, the concept of resilience was
closely tied to safety engineering, focusing on preventing catastrophic failures. The term
gained prominence in the early 2000s, particularly through the works of researchers like Erik
Hollnagel and David Woods, who highlighted that failures are not anomalies but an inherent
part of any complex system. The goal shifted from merely preventing failures to ensuring
systems can continue to function when failures occur.

Resilience engineering applies these principles to ensure that applications can recover from
disruptions without compromising user experience. It involves strategies like redundancy,
failover mechanisms, self-healing systems, and graceful degradation. Instead of designing
systems that strive for unrealistic perfection, resilience engineering acknowledges the
inevitability of failures and focuses on how to respond effectively when they arise.

1.2 Challenges in Distributed Systems

Distributed systems offer numerous advantages, but they come with inherent challenges. In
containerized environments, some of the most common issues include:

● State Management: Maintaining a consistent state across distributed nodes is
challenging. Data replication and synchronization must be carefully managed to
prevent conflicts or data loss.

● Node Failures: In a cluster, individual nodes (servers) can fail due to hardware issues,
power outages, or software crashes. If an orchestrator cannot quickly detect and
handle these failures, the entire application can suffer.

● Scaling Issues: As workloads increase, systems need to scale seamlessly.
Misconfigurations, resource constraints, or bottlenecks can hinder this process,
causing failures or performance degradation.

● Network Latency: In a distributed environment, communication between containers
and nodes happens over a network. Latency, packet loss, or connectivity issues can
degrade performance or cause timeouts, affecting application responsiveness.

These challenges highlight why resilience is not an optional feature but a necessity in modern
distributed systems. Effective resilience engineering ensures that failures in one part of the
system do not cascade into larger issues that impact overall availability and performance.

1.3 Container Orchestration in Modern Systems

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 304

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Containerization has transformed how developers package and deploy applications. A
container encapsulates an application and its dependencies, ensuring it runs consistently
across different environments. This approach eliminates many challenges related to
environment inconsistencies and dependency management. Containers are lightweight,
portable, and start quickly, making them ideal for modern software development and
deployment practices.

Container orchestration provides capabilities such as load balancing, auto-scaling, rolling
updates, and self-healing. If a container crashes, Kubernetes can automatically restart it or
move it to a healthy node. This automation enhances operational efficiency and improves
system reliability. Yet, despite these benefits, the complexity of managing distributed
containers introduces new challenges. Orchestrators themselves must be resilient, as they
serve as the backbone for the applications they manage.

As applications scale, managing thousands of containers manually becomes impractical. This
is where container orchestration tools come into play. Platforms like Kubernetes automate
the deployment, scaling, and management of containerized applications. Kubernetes,
originally developed by Google, has become the de facto standard for container orchestration
due to its robust feature set and vibrant community.

1.4 Purpose of the Paper

This paper explores how resilience engineering principles can be applied to container
orchestration to manage and mitigate failures in distributed systems. It covers the key
concepts behind resilience engineering, the role of container orchestration tools like
Kubernetes, and the specific challenges faced in distributed environments. Additionally, the
paper offers strategies and best practices for building resilient containerized systems, focusing
on techniques such as self-healing, failover, and redundancy. By understanding and
implementing these principles, organizations can ensure their distributed applications remain
robust, reliable, and performant even under challenging conditions.

2. Approaches to Maintaining Service Availability

Resilience in distributed systems is all about maintaining service availability even in the face
of unexpected failures. As applications and services increasingly rely on container
orchestration tools like Kubernetes, ensuring continuous availability is crucial. Here, we'll
explore proven methods and best practices for keeping services running smoothly, even when
failures inevitably occur.

2.1 Auto-Healing Mechanisms

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 305

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Auto-healing mechanisms are designed to detect and correct failures automatically, ensuring
that services recover quickly and seamlessly. In container orchestration platforms like
Kubernetes, these mechanisms play a pivotal role in maintaining system resilience.

● Liveness and Readiness Probes:
Probes are key tools for maintaining application health. They allow Kubernetes to
monitor the health of each container and respond accordingly:

○ Readiness Probes determine if a container is ready to handle requests. If a
container is not ready, Kubernetes temporarily removes it from the pool of
available endpoints. This prevents traffic from being sent to unhealthy pods
and ensures users do not experience failed requests.

○ Liveness Probes determine if a container is still running. If the liveness probe
fails (indicating the container is stuck or unresponsive), Kubernetes will restart
the container automatically. This ensures that even when applications
encounter unexpected issues, they can recover without manual intervention.

● Controller Patterns:
Kubernetes employs controllers like Deployments and StatefulSets to ensure the
desired state of your application is maintained. For instance, if a deployment specifies
three replicas of a pod and one pod fails, the deployment controller automatically
creates a new one to meet the required state.

● Self-Healing Pods:
Kubernetes ensures that if a pod (a group of one or more containers) fails, it will
automatically attempt to restart or reschedule the pod on a healthy node. This feature
is built into Kubernetes’ core functionality and helps minimize downtime caused by
individual container crashes. For example, if a pod becomes unresponsive due to a
software error, Kubernetes will detect the failure and attempt to restore it to a
functional state without human intervention.

Auto-healing mechanisms significantly reduce the need for manual intervention, speeding up
recovery times and keeping services available. The combination of self-healing pods, probes,
and automated controllers ensures that distributed systems can cope with transient failures,
leading to more resilient applications.

2.2 Load Balancing Techniques

Load balancing plays a critical role in distributing workloads efficiently among multiple
resources to prevent any single server or node from becoming overwhelmed. In the context
of container orchestration, load balancing ensures that requests are routed effectively,
promoting both availability and performance. Several key techniques help manage this
distribution:

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 306

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

● Round-Robin Load Balancing:
Round-robin is one of the simplest load-balancing techniques. It distributes incoming
requests evenly across available nodes or pods in a sequential manner. For example, if
there are three pods, the first request goes to pod A, the second to pod B, and the third
to pod C before starting over. This method works well for workloads where all nodes
are equally capable and requests are roughly similar in nature. However, it may fall
short when nodes have uneven loads or varying performance.

● Consistent Hashing:
Consistent hashing ensures that requests from a particular client or for specific data
consistently go to the same node. This technique is particularly useful for distributed
caching systems and databases where data locality is critical. If a node fails, consistent
hashing redistributes the load among the remaining nodes with minimal disruption.
This minimizes the need to reassign large portions of the traffic, helping to maintain
service stability even during node failures.

● Least Connections:
The least connections method directs incoming traffic to the node or pod with the
fewest active connections. This technique is particularly effective for applications with
long-running requests or unpredictable processing times. By sending traffic to the least
burdened node, you avoid overwhelming any single node, leading to better resource
utilization and increased reliability.

Effective load balancing in container orchestration often involves combining these techniques.
For example, Kubernetes services can leverage Ingress controllers or service meshes like Istio
to apply these balancing strategies dynamically. The key to success is understanding your
application’s traffic patterns and choosing the right load-balancing strategy to meet those
needs.

2.3 Scalability Considerations

Scalability is the ability of a system to handle an increasing amount of work or traffic without
compromising performance or availability. In container orchestration, scalability ensures that
your services can adapt dynamically to traffic changes, preventing overloads and failures.
There are two primary types of scalability to consider: horizontal and vertical scaling.

● Handling Traffic Surges:
Managing unexpected traffic surges is essential for maintaining availability.
Techniques like buffering and rate limiting can help control the flow of traffic to
prevent overwhelming the system. Additionally, having over-provisioned pods ready
to handle sudden spikes can provide a safety net, ensuring that services remain
responsive during peak loads.

● Cluster Autoscaling:
When horizontal pod autoscaling reaches the limits of the cluster’s capacity,

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 307

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Kubernetes’ Cluster Autoscaler can automatically provision additional nodes. This
ensures that the infrastructure scales alongside the application, maintaining
availability even during heavy traffic periods.

● Vertical Scaling:
Vertical scaling involves increasing the resources allocated to an existing pod (e.g.,
CPU or memory). While less flexible than horizontal scaling, vertical scaling can be
useful for workloads that require more intensive resources. Kubernetes provides tools
like the Vertical Pod Autoscaler (VPA) to adjust resource allocations automatically.
This can help improve performance for workloads that have predictable resource
needs but may occasionally spike.

● Horizontal Pod Autoscaling (HPA):
Horizontal scaling involves adding more pods to handle increased traffic. Kubernetes’
Horizontal Pod Autoscaler (HPA) automatically adjusts the number of pod replicas
based on resource metrics like CPU or memory usage. For example, if CPU usage
exceeds 70% for a sustained period, HPA can create additional pods to distribute the
load. Once the traffic subsides, HPA can scale back down to reduce resource usage
and costs.

Scalability considerations ensure that your system can handle both predictable growth and
sudden surges. By combining horizontal and vertical scaling with thoughtful traffic
management, you can create a resilient system that maintains availability no matter how
demand fluctuates.

2.4 High-Availability (HA) Architectures

High-Availability (HA) architectures are designed to eliminate single points of failure by
ensuring redundancy at every level of the system. In container orchestration, HA is essential
for maintaining service availability during hardware or software failures. Implementing an
HA architecture involves several best practices:

● Multi-Master Setups:
In Kubernetes, the control plane (which manages the cluster) can be configured for
high availability by having multiple master nodes. If one master node fails, the others
can continue managing the cluster. This setup ensures that critical operations like
scheduling, replication, and health checks continue without disruption. Load
balancers can direct requests to the available master nodes, providing a seamless
failover mechanism.

● Data Replication:
In distributed systems, data replication is crucial to avoid data loss during failures.
Tools like etcd (used by Kubernetes for storing cluster state) implement data
replication to ensure that the cluster’s configuration remains consistent across multiple
nodes. Similarly, applications using databases can benefit from replication strategies

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 308

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

like leader-follower or multi-master replication, ensuring data remains accessible even
when one node fails.

● Redundant Nodes:
Ensuring redundancy at the worker node level is equally important. By running
multiple instances of each application across different nodes, the system can tolerate
node failures without affecting overall availability. If one node goes offline, traffic is
automatically routed to the remaining healthy nodes.

● Load Balancers for HA:
External load balancers play a key role in distributing traffic between redundant nodes
or pods. By placing load balancers in front of your services, traffic can be rerouted to
healthy instances automatically, ensuring uninterrupted service availability even
during failures.

Implementing high-availability architectures requires thoughtful design and planning.
Ensuring that all components—control planes, worker nodes, and data storage—are highly
available reduces the risk of downtime and makes distributed systems more robust.

3. Handling Tainted Nodes in Container Orchestration

Container orchestration platforms like Kubernetes ensure applications remain reliable and
resilient. One key aspect of maintaining this reliability is managing nodes that are degraded
or unusable. When nodes experience issues, container orchestration systems must
intelligently handle them to prevent cascading failures and maintain overall system stability.
This is where the concept of “tainted nodes” comes into play.

Effectively managing tainted nodes ensures that workloads continue to run smoothly, even
in the face of hardware failures, network issues, or other disruptions. In this piece, we’ll
explore what tainted nodes are, how Kubernetes uses taints and tolerations, the tools available
for node health monitoring, and strategies for recovering or replacing problematic nodes.

3.1 Strategies for Node Recovery or Replacement

When nodes are tainted due to issues, the next step is to recover or replace them. This ensures
that workloads remain stable and available. Container orchestration platforms offer several
strategies for handling tainted nodes effectively.

3.1.1 Migrating Workloads

In cases where a node becomes suddenly degraded, workloads can be automatically migrated
to healthy nodes. Kubernetes handles this seamlessly by rescheduling pods onto available
nodes, minimizing disruption.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 309

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

3.1.2 Re-provisioning Nodes

If a node is beyond recovery due to hardware failure or severe misconfiguration, re-
provisioning becomes necessary. This involves:

● Removing the Node: Delete the problematic node from the cluster.
● Adding the Node Back: Once the node is healthy, join it back to the cluster.
● Replacing Hardware or Rebuilding: Fix hardware issues or reinstall the operating

system and Kubernetes components.

3.1.3 Draining Nodes

When a node needs maintenance or is experiencing issues, it can be drained. Draining a node
means safely evicting all running workloads and rescheduling them on healthy nodes. This
helps prevent downtime during node repairs.

Steps for Draining a Node:

● Mark the node as unschedulable to prevent new workloads from being assigned.
● Evict all running pods.
● Mark the node as schedulable again once it’s healthy.
● Perform maintenance or repairs.

3.1.4 Monitoring After Recovery

After recovering or replacing a node, monitor it closely to ensure it functions properly. Verify
that workloads are rescheduled successfully and that the node does not show recurring issues.

Key Takeaways

● Draining nodes helps prevent workload disruption during repairs.
● Re-provisioning restores cluster health when nodes are irreparably damaged.
● Automation reduces manual effort and speeds up recovery processes.
● Migration ensures workloads stay operational when nodes fail unexpectedly.

By employing these strategies, container orchestration systems like Kubernetes ensure that
nodes are managed effectively, maintaining resilience in the face of failures.

3.1.5 Automated Recovery

Automated tools and scripts can handle node recovery processes. Tools like Cluster
Autoscaler can automatically replace failed nodes in cloud environments, ensuring cluster
capacity remains stable.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 310

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

3.2 Kubernetes Taints and Tolerations

Kubernetes has a sophisticated method for handling tainted nodes through taints and
tolerations. This mechanism ensures that workloads are only scheduled on nodes that are
suitable, avoiding degraded or problematic nodes whenever necessary.

3.2.1. Tolerations

Tolerations are applied to workloads (pods) and allow them to bypass taints. A toleration
specifies that a workload is capable of running on a node, even if the node has certain issues.
Tolerations match the key-value pairs of taints and specify how long a workload can tolerate
a node’s issues.

For instance, a pod that can tolerate a node with disk issues might have the following
toleration:

key: "disk-full"

operator: "Equal"

value: "true"

effect: "NoSchedule"

This toleration allows the pod to be scheduled on a node with a disk-full taint, overriding the
default behavior.

3.2.2 Understanding Taints

A taint is a key-value pair applied to a node, indicating that the node should not accept
workloads unless explicitly allowed. Taints help prevent the scheduling of new workloads on
problematic nodes, ensuring that issues don’t propagate throughout the system.

Each taint has three components:

● Key: A label identifying the reason for the taint.
● Value: Additional information about the taint.
● Effect: Defines the impact of the taint on scheduling. The three primary effects are:

○ NoSchedule: Prevents scheduling new workloads on the node.
○ PreferNoSchedule: Avoids scheduling new workloads, but allows it if

necessary.
○ NoExecute: Evicts existing workloads and prevents new workloads from being

scheduled.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 311

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Example of a Taint

A node with a disk issue might have the following taint:

key=disk-full, value=true, effect=NoSchedule

This taint prevents new workloads from being scheduled on that node until the disk issue is
resolved.

3.2.3 Balancing Taints & Tolerations

Kubernetes uses taints and tolerations to maintain a balance between avoiding problematic
nodes and ensuring workloads remain operational. By carefully configuring these
mechanisms, you can ensure critical applications continue to run while isolating degraded
nodes.

3.3 What Are Tainted Nodes?

A node is any machine—physical or virtual—capable of running workloads. However, nodes
don’t always function perfectly. Due to various issues, some nodes may become unreliable,
degraded, or completely unusable. When this happens, these nodes are often referred to as
tainted nodes.

3.3.1 Definition & Causes

A tainted node is a node marked as unsuitable for running certain workloads due to identified
issues. Taints are essentially flags that signal a problem or limitation with a node. Some of the
most common causes for nodes to be tainted include:

● Hardware Failures: Issues with CPU, memory, or storage can degrade node
performance.

● Node Configuration Errors: Misconfigurations can make nodes unsuitable for
running certain applications.

● Network Issues: Unreliable or slow connectivity can impact the ability of containers
to communicate.

● Resource Exhaustion: Nodes that have reached capacity and cannot handle additional
workloads.

3.3.2 Examples

● A node experiencing intermittent network failures could be marked as tainted to avoid
affecting applications requiring constant communication.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 312

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

● If a node’s disk is full, it might be tainted to prevent additional workloads from being
scheduled on it.

Tainted nodes are not necessarily unusable forever. Sometimes, these issues can be resolved
quickly. In other cases, a more involved recovery or replacement process is needed. This
proactive approach helps distributed systems remain robust, even when individual nodes fail.

3.4 Node Health Monitoring

Effectively managing tainted nodes requires robust node health monitoring practices.
Container orchestration systems rely on various tools and strategies to detect node issues
quickly, allowing administrators to take corrective action before problems escalate.

3.4.1 Why Node Health Monitoring is Essential?

Nodes can fail for a variety of reasons, and if these failures go undetected, they can lead to
application downtime, performance degradation, or data loss. Health monitoring helps
identify issues like:

● High CPU or memory usage
● Hardware degradation
● Disk failures or full storage
● Network latency or connectivity problems

Early detection of these issues allows for timely intervention, such as marking nodes as tainted
or triggering automated recovery processes.

3.4.2 Best Practices for Node Health Monitoring

● Set Alerts: Configure alerts to notify administrators when nodes reach critical resource
usage or encounter errors.

● Regular Health Checks: Perform routine health checks to identify potential problems
before they affect workloads.

● Automated Tainting: Integrate tools like NPD to automatically taint nodes when
issues are detected, reducing manual intervention.

● Logging & Visualization: Use centralized logging and visualization tools to get a
comprehensive view of node health.

Effective health monitoring ensures that degraded nodes are identified and managed swiftly,
maintaining the resilience of your distributed system.

3.4.3 Tools for Node Health Monitoring

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 313

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Several tools can be integrated with Kubernetes to monitor node health effectively:

● Prometheus: An open-source monitoring and alerting toolkit. Prometheus collects
metrics from nodes, such as CPU usage, memory consumption, and disk space,
allowing for real-time monitoring and alerts when thresholds are exceeded.

● Grafana: Often used alongside Prometheus, Grafana provides visual dashboards for
monitoring node metrics, making it easier to identify patterns and anomalies.

● Node Problem Detector (NPD): A Kubernetes component that monitors nodes for
hardware and software issues. NPD can detect problems like filesystem corruption,
network failures, and kernel issues, and it can automatically taint nodes when issues
are detected.

● Kubelet: The Kubernetes agent running on each node. Kubelet continuously reports
node status to the control plane, helping identify nodes that are unhealthy or
unreachable.

4. Ensuring Fault Tolerance

4.1 Distributed Consensus Mechanisms

Maintaining consistency across multiple nodes is challenging. Distributed consensus
mechanisms are algorithms that help nodes agree on a common state, even when some nodes
fail or behave unpredictably. These mechanisms are essential for ensuring fault tolerance in
container orchestration environments.

4.1.1 Consensus in Kubernetes

Kubernetes relies on etcd (which uses the Raft algorithm) to store the desired and current state
of the cluster. For example, when you deploy a new container or make changes to a service,
the changes are recorded in etcd. The Kubernetes control plane components (like the API
server and scheduler) interact with etcd to ensure the cluster state remains consistent.

If an etcd node fails, the remaining nodes in the etcd cluster continue to function, and the
system elects a new leader to handle updates. This distributed consensus mechanism helps
Kubernetes maintain fault tolerance and ensures that the cluster can recover from failures
seamlessly.

Distributed consensus is critical for keeping configurations and states synchronized across
nodes. Without it, nodes might operate with inconsistent or outdated information, leading to
unpredictable behavior.

4.1.2 Raft & Paxos

Two popular consensus algorithms used in distributed systems are Raft and Paxos:

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 314

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

● Paxos: Paxos is a family of algorithms that achieve consensus in a distributed system.
While Paxos is more complex than Raft, it is widely used in systems like Google's
Chubby and Apache's Zookeeper. Paxos ensures that nodes agree on a single value,
even in the presence of failures.

● Raft: Raft is a consensus algorithm designed to be understandable and easy to
implement. It works by electing a leader node responsible for coordinating log entries
across the cluster. If the leader fails, the remaining nodes elect a new leader. Raft is
used by many modern systems, including etcd, which serves as the key-value store for
Kubernetes. Kubernetes uses etcd to maintain the cluster state, ensuring that
configuration changes are consistently applied.

4.2 Chaos Engineering

Chaos engineering is a proactive approach to building resilient systems by deliberately
injecting failures to test how the system responds. Instead of waiting for failures to occur
naturally, chaos engineering helps teams discover vulnerabilities before they impact users.

4.2.1 Tools for Chaos Engineering

Several tools help implement chaos engineering in distributed systems:

● Chaos Monkey: Developed by Netflix, Chaos Monkey randomly terminates instances
in a production environment to ensure that services can handle sudden failures. This
tool encourages developers to build systems that can recover gracefully from
unexpected disruptions.

● Gremlin: A commercial chaos engineering platform that provides a suite of tools for
injecting failures like CPU spikes, disk failures, and network latency. Gremlin helps
teams design and execute chaos experiments with precision.

● LitmusChaos: An open-source chaos engineering tool for Kubernetes. It allows teams
to simulate various failure scenarios, such as pod deletions, node failures, and network
issues, to test the resilience of containerized applications.

4.2.2 The Philosophy of Chaos Engineering

The idea behind chaos engineering is to create controlled experiments that reveal weaknesses
in a system's design. By simulating real-world failure scenarios, teams can understand how
their systems behave under stress and improve resilience. Chaos engineering asks questions
like:

● What happens if a node crashes?
● Can the system recover if a critical service fails?
● How does the system handle network latency or partitioning?

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 315

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

4.2.3 Benefits of Chaos Engineering

Chaos engineering helps teams identify weaknesses before they cause real outages. By
continuously testing for failures, teams can:

● Improve system design and fault tolerance.
● Reduce the time to recover from incidents.
● Build confidence that the system can handle unexpected events.

Running chaos experiments in a Kubernetes cluster might reveal that a critical service lacks
sufficient replicas. By addressing this issue proactively, teams can reduce the risk of downtime
during a real incident.

4.3 Redundancy & Replication

Redundancy and replication are fundamental strategies for ensuring that systems can tolerate
failures. These techniques aim to eliminate single points of failure by maintaining multiple
copies of data or services. If one component fails, the system can continue functioning with
the redundant or replicated resources.

4.3.1 Database Replication & Sharding

Databases are a common bottleneck and single point of failure in distributed systems.
Replication is a technique where data is copied to multiple servers, ensuring that if one server
goes offline, another can take over seamlessly. There are typically two types of database
replication:

● Master-Master Replication: Multiple nodes can handle both reads and writes,
providing higher availability and performance.

● Master-Slave Replication: In this approach, a primary (master) database handles
writes, while secondary (slave) databases handle reads. If the master fails, one of the
slaves can be promoted to take its place.

Sharding, on the other hand, divides the database into smaller, manageable pieces (shards)
that are distributed across different nodes. Each shard handles a portion of the data, reducing
the load on any single node and improving fault tolerance. If one shard fails, only a portion
of the data is affected, minimizing the impact on the overall system.

4.3.2 Replicated Services

In container orchestration platforms like Kubernetes, services can be replicated across
multiple nodes. For example, running multiple instances (or replicas) of a microservice

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 316

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

ensures that if one instance fails, traffic can be rerouted to the remaining healthy instances.
This is commonly managed by Kubernetes Deployments, which maintain a desired number
of replicas and automatically replace any that fail.

Load balancers further enhance this strategy by distributing requests among replicas. If one
replica becomes unresponsive, the load balancer directs traffic to other healthy replicas,
reducing the risk of downtime.

4.3.3 Distributed Storage Solutions

Distributed storage systems like Amazon S3, Google Cloud Storage, and open-source
solutions like Ceph and MinIO replicate data across multiple physical locations. This ensures
durability and availability even if a data center or node goes offline. In Kubernetes, Persistent
Volumes (PVs) and StorageClasses can be configured to use replicated storage backends to
safeguard data.

Redundancy and replication are essential for minimizing downtime and data loss. By
ensuring that multiple copies of critical services and data exist, systems can continue to
operate smoothly, even when failures occur.

4.4 Disaster Recovery Plans

Even with redundancy, consensus mechanisms, and chaos engineering, catastrophic failures
can still occur. Disaster recovery (DR) plans are essential for ensuring that systems can recover
quickly from major incidents, such as data center outages, natural disasters, or cyberattacks.

4.4.1 Failover Mechanisms

Failover mechanisms automatically switch to standby systems when primary systems fail. For
example:

● Active-Active Failover: Multiple systems handle traffic simultaneously. If one system
fails, the remaining systems absorb the load.

● Active-Passive Failover: One system actively handles traffic, while a secondary
system remains on standby. If the primary system fails, traffic is redirected to the
secondary system.

4.4.2 Backup Strategies

Regular backups are a fundamental component of any disaster recovery plan. In distributed
systems, backups should be automated, frequent, and stored in multiple locations. For
example:

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 317

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

● Kubernetes Backups: Tools like Velero can back up Kubernetes cluster state and
persistent volumes, ensuring that workloads can be restored quickly in the event of a
failure.

● Database Backups: Schedule regular snapshots of databases and store them in cloud
storage services like AWS S3 or Google Cloud Storage.

Multi-cluster deployments can provide failover capabilities. If one cluster becomes
unavailable, traffic can be routed to a healthy cluster in a different region.

4.4.3 Recovery Processes

Disaster recovery plans should include clear procedures for restoring services and data. This
includes:

● Restoring from Backups: Steps for recovering data from backups and verifying
integrity.

● Testing Recovery Plans: Regularly testing disaster recovery plans ensures they work
as expected. This includes running fire drills and simulating disaster scenarios.

● Rebuilding Infrastructure: Automating the provisioning of new nodes and services
using tools like Terraform or Kubernetes manifests.

4.4.4 Importance of Documentation

A well-documented disaster recovery plan ensures that team members know their roles and
responsibilities during an incident. Documentation should include step-by-step instructions,
contact information, and escalation procedures.

5. Conclusion

5.1 Key Takeaways

Resilience engineering plays a pivotal role in ensuring the reliability and availability of
container-orchestrated distributed systems. Maintaining service availability relies on
strategies like automated failover, redundancy, and efficient load balancing, all of which
mitigate disruptions. Handling tainted or compromised nodes is crucial, and techniques such
as node cordoning, draining, and automated recovery ensure these nodes don't compromise
the overall system. Fault tolerance is achieved through practices like state replication,
dynamic resource allocation, and health monitoring, allowing systems to adapt quickly to
failures.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 318

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Together, these strategies form a robust framework that helps distributed applications recover
seamlessly from unexpected failures, minimizing downtime and maintaining user trust.
Prioritizing resilience allows teams to manage complex systems confidently, knowing that
failures are contained and service disruptions are short-lived.

5.2 Future Trends

Advancements in machine learning and AI-driven monitoring are poised to enhance
resilience engineering further. Predictive analytics can identify potential failures before they
occur, enabling preemptive actions. Serverless computing and service meshes also shape how
resilience is managed in distributed systems, offering more granular control over traffic
routing and service recovery. As container orchestration evolves, self-healing architectures
and autonomous systems will become more prevalent, making resilience more proactive than
reactive.

5.3 Final Thoughts

In an ever-evolving digital landscape, resilience engineering is not optional—it's essential. A
resilient system ensures reliable services and fosters confidence in an organization's ability to
handle inevitable disruptions with grace and efficiency.

6. References

1. Chinamanagonda, S. (2023). Focus on resilience engineering in cloud services. Academia
Nexus Journal, 2(1).

2. Kommera, A. R. (2013). The Role of Distributed Systems in Cloud Computing:

Scalability, Efficiency, and Resilience. NeuroQuantology, 11(3), 507-516.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 319

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

3. Casalicchio, E., & Iannucci, S. (2020). The state-of-the-art in container technologies:
Application, orchestration and security. Concurrency and Computation: Practice and
Experience, 32(17), e5668.

4. Aguilera, X. M., Otero, C., Ridley, M., & Elliott, D. (2018, July). Managed containers: A
framework for resilient containerized mission critical systems. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD) (pp. 946-949). IEEE.

5. Casalicchio, E. (2019). Container orchestration: A survey. Systems Modeling: Methodologies
and Tools, 221-235.

6. Acharya, J. N., & Suthar, A. C. (2021, October). Docker container orchestration management:
A review. In International Conference on Intelligent Vision and Computing (pp. 140-153).
Cham: Springer International Publishing.

7. Amiri, Z., Heidari, A., Navimipour, N. J., & Unal, M. (2023). Resilient and dependability
management in distributed environments: A systematic and comprehensive literature review.
Cluster Computing, 26(2), 1565-1600.

8. Dobson, S., Hutchison, D., Mauthe, A., Schaeffer-Filho, A., Smith, P., & Sterbenz,

J. P. (2019). Self-organization and resilience for networked systems: Design

principles and open research issues. Proceedings of the IEEE, 107(4), 819-834.

9. Burns, B. (2018). Designing distributed systems: patterns and paradigms for scalable,
reliable services. " O'Reilly Media, Inc.".

10. Olorunnife, K., Lee, K., & Kua, J. (2021). Automatic failure recovery for container-based iot
edge applications. Electronics, 10(23), 3047.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 320

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

11. Aldwyan, Y., & Sinnott, R. O. (2019). Latency-aware failover strategies for containerized
web applications in distributed clouds. Future Generation Computer Systems, 101, 1081-1095.

12. Heorhiadi, V., Rajagopalan, S., Jamjoom, H., Reiter, M. K., & Sekar, V. (2016, June).
Gremlin: Systematic resilience testing of microservices. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS) (pp. 57-66). IEEE.

13. Hale, A., Guldenmund, F., & Goossens, L. (2017). Auditing resilience in risk control and
safety management systems. In Resilience Engineering (pp. 289-314). CRC Press.

14. Alam, M., Rufino, J., Ferreira, J., Ahmed, S. H., Shah, N., & Chen, Y. (2018). Orchestration
of microservices for iot using docker and edge computing. IEEE Communications Magazine,
56(9), 118-123.

15. Poltronieri, F., Tortonesi, M., & Stefanelli, C. (2022, April). A chaos engineering approach
for improving the resiliency of it services configurations. In NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium (pp. 1-6). IEEE

16. Katari, A., & Rodwal, A. NEXT-GENERATION ETL IN FINTECH: LEVERAGING AI
AND ML FOR INTELLIGENT DATA TRANSFORMATION.

17. Katari, A. Case Studies of Data Mesh Adoption in Fintech: Lessons Learned-Present Case
Studies of Financial Institutions.

18. Katari, A. (2023). Security and Governance in Financial Data Lakes: Challenges and
Solutions. Journal of Computational Innovation, 3(1).

19. Katari, A., & Vangala, R. Data Privacy and Compliance in Cloud Data Management for
Fintech.

20. Katari, A., Ankam, M., & Shankar, R. Data Versioning and Time Travel In Delta Lake for
Financial Services: Use Cases and Implementation.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 321

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

21. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2024). Building Cross-
Organizational Data Governance Models for Collaborative Analytics. MZ Computing Journal,
5(1). 2024/3/13

22. Nookala, G. (2024). The Role of SSL/TLS in Securing API Communications: Strategies for
Effective Implementation. Journal of Computing and Information Technology, 4(1).
2024/2/13

23. Nookala, G. (2024). Adaptive Data Governance Frameworks for Data-Driven Digital
Transformations. Journal of Computational Innovation, 4(1). 2024/2/13

24. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2023). Zero-Trust Security
Frameworks: The Role of Data Encryption in Cloud Infrastructure. MZ Computing Journal,
4(1).

25. Boda, V. V. R., & Immaneni, J. (2023). Automating Security in Healthcare: What Every IT
Team Needs to Know. Innovative Computer Sciences Journal, 9(1).

26. Immaneni, J. (2023). Best Practices for Merging DevOps and MLOps in Fintech. MZ
Computing Journal, 4(2).

27. Immaneni, J. (2023). Scalable, Secure Cloud Migration with Kubernetes for Financial
Applications. MZ Computing Journal, 4(1).

28. Boda, V. V. R., & Immaneni, J. (2022). Optimizing CI/CD in Healthcare: Tried and True
Techniques. Innovative Computer Sciences Journal, 8(1).

29. Thumburu, S. K. R. (2023). Leveraging AI for Predictive Maintenance in EDI Networks: A
Case Study. Innovative Engineering Sciences Journal, 3(1).

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 322

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

30. Thumburu, S. K. R. (2023). AI-Driven EDI Mapping: A Proof of Concept. Innovative
Engineering Sciences Journal, 3(1).

31. Thumburu, S. K. R. (2023). EDI and API Integration: A Case Study in Healthcare, Retail,
and Automotive. Innovative Engineering Sciences Journal, 3(1).

32. Thumburu, S. K. R. (2023). Quality Assurance Methodologies in EDI Systems
Development. Innovative Computer Sciences Journal, 9(1).

33. Thumburu, S. K. R. (2023). Data Quality Challenges and Solutions in EDI Migrations.
Journal of Innovative Technologies, 6(1).

34. Komandla, V. Crafting a Clear Path: Utilizing Tools and Software for Effective Roadmap
Visualization.

35. Komandla, V. (2023). Safeguarding Digital Finance: Advanced Cybersecurity Strategies for
Protecting Customer Data in Fintech.

36. Komandla, Vineela. "Crafting a Vision-Driven Product Roadmap: Defining Goals and
Objectives for Strategic Success." Available at SSRN 4983184 (2023).

37. Komandla, Vineela. "Critical Features and Functionalities of Secure Password Vaults for
Fintech: An In-Depth Analysis of Encryption Standards, Access Controls, and Integration
Capabilities." Access Controls, and Integration Capabilities (January 01, 2023) (2023).

38. Komandla, Vineela. "Crafting a Clear Path: Utilizing Tools and Software for Effective
Roadmap Visualization." Global Research Review in Business and Economics [GRRBE] ISSN
(Online) (2023): 2454-3217.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 323

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

39. Muneer Ahmed Salamkar. Real-Time Analytics: Implementing ML Algorithms to Analyze
Data Streams in Real-Time. Journal of AI-Assisted Scientific Discovery, vol. 3, no. 2, Sept. 2023,
pp. 587-12

40. Muneer Ahmed Salamkar. Feature Engineering: Using AI Techniques for Automated
Feature Extraction and Selection in Large Datasets. Journal of Artificial Intelligence Research
and Applications, vol. 3, no. 2, Dec. 2023, pp. 1130-48

41. Muneer Ahmed Salamkar. Data Visualization: AI-Enhanced Visualization Tools to Better
Interpret Complex Data Patterns. Journal of Bioinformatics and Artificial Intelligence, vol. 4,
no. 1, Feb. 2024, pp. 204-26

42. Muneer Ahmed Salamkar, and Jayaram Immaneni. Data Governance: AI Applications in
Ensuring Compliance and Data Quality Standards. Journal of AI-Assisted Scientific
Discovery, vol. 4, no. 1, May 2024, pp. 158-83

43. Naresh Dulam, et al. “Foundation Models: The New AI Paradigm for Big Data Analytics
”. Journal of AI-Assisted Scientific Discovery, vol. 3, no. 2, Oct. 2023, pp. 639-64

44. Naresh Dulam, et al. “Generative AI for Data Augmentation in Machine Learning”.
Journal of AI-Assisted Scientific Discovery, vol. 3, no. 2, Sept. 2023, pp. 665-88

45. Naresh Dulam, and Karthik Allam. “Snowpark: Extending Snowflake’s Capabilities for
Machine Learning”. African Journal of Artificial Intelligence and Sustainable Development,
vol. 3, no. 2, Oct. 2023, pp. 484-06

46. Naresh Dulam, and Jayaram Immaneni. “Kubernetes 1.27: Enhancements for Large-Scale
AI Workloads ”. Journal of Artificial Intelligence Research and Applications, vol. 3, no. 2, July
2023, pp. 1149-71

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 324

Journal of AI-Assisted Scientific Discovery

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

47. Naresh Dulam, et al. “GPT-4 and Beyond: The Role of Generative AI in Data Engineering”.
Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, Feb. 2024, pp. 227-49

48. Sarbaree Mishra, and Jeevan Manda. “Building a Scalable Enterprise Scale Data Mesh With
Apache Snowflake and Iceberg”. Journal of AI-Assisted Scientific Discovery, vol. 3, no. 1, June
2023, pp. 695-16

49. Sarbaree Mishra. “Scaling Rule Based Anomaly and Fraud Detection and Business Process
Monitoring through Apache Flink”. Australian Journal of Machine Learning Research &
Applications, vol. 3, no. 1, Mar. 2023, pp. 677-98

50. Sarbaree Mishra. “The Lifelong Learner - Designing AI Models That Continuously Learn
and Adapt to New Datasets”. Journal of AI-Assisted Scientific Discovery, vol. 4, no. 1, Feb.
2024, pp. 207-2

51. Sarbaree Mishra, and Jeevan Manda. “Improving Real-Time Analytics through the Internet
of Things and Data Processing at the Network Edge ”. Journal of AI-Assisted Scientific
Discovery, vol. 4, no. 1, Apr. 2024, pp. 184-06

52. Sarbaree Mishra. “Cross Modal AI Model Training to Increase Scope and Build More
Comprehensive and Robust Models. ”. Journal of AI-Assisted Scientific Discovery, vol. 4, no.
2, July 2024, pp. 258-80

53. Babulal Shaik. Developing Predictive Autoscaling Algorithms for Variable Traffic Patterns
. Journal of Bioinformatics and Artificial Intelligence, vol. 1, no. 2, July 2021, pp. 71-90

54. Babulal Shaik, et al. Automating Zero-Downtime Deployments in Kubernetes on Amazon
EKS . Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, Oct. 2021, pp. 355-77

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

