
Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 355

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

Automating Zero-Downtime Deployments in Kubernetes on Amazon

EKS

Babulal Shaik, Cloud Solutions Architect at Amazon Web Services, USA

Karthik Allam, Big Data Infrastructure Engineer, JP Morgan & Chase, USA

Sai Charith Daggupati, Sr. IT BSA (Data Systems), CF Industries

Abstract:

Automating zero-downtime deployments in Kubernetes on Amazon Elastic Kubernetes

Service (EKS) enables businesses to deliver new features and updates seamlessly without

interrupting user experiences. With its robust orchestration capabilities, Kubernetes

empowers organizations to achieve rolling updates and progressive rollouts, reducing risks

associated with software releases. By leveraging Amazon EKS, teams can deploy

containerized applications on a managed service that simplifies Kubernetes operations,

allowing a greater focus on automation and reliability. This abstract explores strategies and

best practices for implementing automated, zero-downtime deployments in Kubernetes

environments, emphasizing the importance of CI/CD pipelines and tools like Helm, ArgoCD,

and Spinnaker. It discusses the role of Kubernetes features like Deployment resources, health

checks, and readiness probes in ensuring application stability during updates. Additionally,

the paper examines how service meshes like Istio or Linkerd can enhance observability and

traffic routing, enabling advanced deployment patterns like blue-green deployments and

canary releases. By automating these processes, teams can reduce manual intervention,

enhance deployment consistency, and respond quickly to changing business needs. The

discussion includes lessons from industry use cases and highlights how teams can overcome

challenges like configuration drift, rollback complexities, and scaling under high traffic.

Ultimately, this abstract underscores the potential of combining Kubernetes with Amazon

EKS to foster a culture of innovation, speed, and resilience in software delivery pipelines,

aligning with DevOps and cloud-native best practices.

Keywords:

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 356

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

Kubernetes, Amazon EKS, Zero-Downtime Deployment, Canary Deployment, Blue-Green

Deployment, Progressive Delivery, CI/CD Pipelines, DevOps Automation, Traffic

Management, Deployment Strategies, Kubernetes Automation, Service Mesh, Rollback

Strategies, Continuous Monitoring.

1. Introduction

Delivering applications quickly, reliably, and without interruptions is the holy grail for

developers and operations teams. Kubernetes, an open-source container orchestration

platform, has revolutionized the way applications are deployed and managed by providing

robust capabilities for scaling, load balancing, and self-healing. Amazon Elastic Kubernetes

Service (EKS), a managed Kubernetes service by AWS, takes these benefits further by

offloading the operational overhead of managing Kubernetes infrastructure. Together, they

form a powerful ecosystem that allows teams to focus more on application delivery rather

than managing the complexities of container orchestration.

The rise of DevOps and Continuous Integration/Continuous Deployment (CI/CD) pipelines

has further amplified the need for automated and reliable deployment strategies. Gone are

the days of manually rolling out updates during off-peak hours; today, users expect

continuous improvements delivered at speed without sacrificing reliability. This expectation

has made zero-downtime deployments a cornerstone of modern software practices. But

achieving this in a Kubernetes environment, especially at scale, is far from straightforward.

Zero-downtime deployments—where new application versions are rolled out without any

noticeable disruption to users—are critical in achieving seamless user experiences. This

concept is particularly vital in the era of digital transformation, where any downtime can

result in lost revenue, frustrated users, and damaged brand reputation. For businesses

running mission-critical applications, ensuring 24/7 availability has become a non-negotiable

requirement.

We’ll dive into how Kubernetes and Amazon EKS can be leveraged to implement zero-

downtime deployments. By the end, you’ll have a clear understanding of the techniques, tools,

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 357

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

and best practices to automate and optimize your deployment processes, ensuring your

applications remain available and performant at all times.

1.1 Background & Importance

Kubernetes has emerged as the de facto standard for container orchestration, offering features

like automated scaling, service discovery, and rolling updates. Its declarative approach to

application management allows developers to define desired states for their applications,

while Kubernetes ensures that those states are maintained. This abstraction has empowered

teams to build and deploy microservices-based architectures with ease, enabling faster

innovation cycles.

The importance of zero-downtime deployments cannot be overstated in this context. In

competitive markets, the ability to deliver updates without disrupting user experiences is a

key differentiator. Customers expect applications to remain operational at all times, whether

it’s a social media platform, e-commerce site, or financial service. Even a few seconds of

downtime can lead to lost transactions, abandoned shopping carts, or reputational damage.

Amazon EKS builds on Kubernetes’ capabilities by providing a fully managed service that

handles the heavy lifting of deploying, scaling, and maintaining Kubernetes clusters. With

EKS, organizations can take advantage of AWS's robust cloud infrastructure while enjoying

the flexibility and scalability of Kubernetes. This combination has made Kubernetes and EKS

a preferred choice for enterprises looking to modernize their application infrastructure.

Zero-downtime deployments are also a mark of maturity. They enable teams to iterate rapidly

and release new features with confidence. This fosters a culture of continuous improvement

and innovation, which is essential in today’s fast-paced digital landscape. By automating zero-

downtime deployments, organizations not only reduce operational risks but also free up their

teams to focus on delivering value to customers.

1.2 Challenges

While the concept of zero-downtime deployments is appealing, implementing it in practice

presents several challenges. One of the primary hurdles is traffic management. In a production

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 358

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

environment, applications often serve thousands or even millions of users simultaneously.

Ensuring that traffic is seamlessly routed to new application versions without disrupting

existing sessions requires sophisticated tools and strategies.

Scalability is yet another concern. In large-scale environments, deployment processes must be

robust enough to handle sudden spikes in traffic or infrastructure changes. Misconfigured

deployments or resource constraints can lead to cascading failures, affecting the entire

application stack. Ensuring scalability while maintaining zero downtime requires careful

tuning of infrastructure and deployment parameters.

Another major challenge is rollback complexity. Not all deployments go as planned, and when

things go wrong, it’s critical to revert to a stable state quickly. However, rollbacks in

Kubernetes can be tricky, especially if database schema changes or stateful services are

involved. Without careful planning, a rollback can lead to data inconsistencies or prolonged

outages.

These challenges highlight the need for automation and best practices. Manual processes are

error-prone and inefficient, especially in dynamic Kubernetes environments. To achieve

reliable zero-downtime deployments, organizations must embrace advanced techniques and

leverage the right tools to streamline their workflows.

1.3 Objectives

This article aims to provide a comprehensive guide on automating zero-downtime

deployments in Kubernetes using Amazon EKS. We’ll cover a range of topics, from

foundational concepts to advanced techniques, to help you build a resilient and efficient

deployment pipeline. Here’s what you can expect:

● Practical Applications and Case Studies

To tie it all together, we’ll showcase real-world examples of how organizations have

successfully implemented zero-downtime deployments in Kubernetes on Amazon

EKS. These case studies will provide practical insights and lessons learned to help you

avoid common pitfalls.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 359

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

● Techniques for Zero-Downtime Deployments

We’ll explore proven deployment strategies like blue-green deployments, canary

releases, and rolling updates. Each approach has its unique advantages and trade-offs,

and we’ll discuss how to choose the right strategy based on your application

requirements.

● Best Practices for Production-Ready Deployments

From setting up health checks and monitoring to implementing rollback mechanisms,

we’ll share actionable insights to ensure your deployments are reliable and scalable.

We’ll also discuss how to leverage AWS features like Elastic Load Balancers and

CloudWatch for enhanced observability and control.

● Tools to Streamline Deployment Workflows

Kubernetes offers a rich ecosystem of tools for managing deployments, such as Helm,

ArgoCD, and Kubernetes-native features like ReplicaSets and Horizontal Pod

Autoscalers. We’ll dive into how these tools can be integrated into your CI/CD

pipelines to automate deployment processes.

2. Kubernetes & Amazon EKS Overview

Kubernetes has become the gold standard for orchestrating containerized applications,

providing a reliable and scalable way to manage complex workloads. At its core, Kubernetes

is an open-source platform that automates the deployment, scaling, and management of

containerized applications. Its architecture is designed to ensure scalability and resilience

through features like automated scheduling, load balancing, and self-healing.

2.1 The Architecture of Kubernetes

Kubernetes operates on a cluster architecture, consisting of control planes and worker nodes.

The control plane oversees the overall cluster management, handling tasks like scheduling,

monitoring, and maintaining desired states of applications. It includes components like the

API server, which serves as the central communication hub, and the etcd datastore for storing

configuration data.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 360

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

Kubernetes excels at scaling applications dynamically, distributing workloads efficiently, and

recovering automatically from failures. These capabilities make it a cornerstone for modern

application deployment strategies.

Worker nodes are where the actual application workloads run. These nodes contain a

container runtime (like Docker or containerd), kubelet (an agent ensuring the desired state of

containers), and kube-proxy (responsible for network routing). Together, this architecture

ensures high availability and distributed workload management.

2.2 What Makes Amazon EKS Special?

Amazon Elastic Kubernetes Service (EKS) builds on the robust foundation of Kubernetes by

simplifying its deployment and management in the cloud. EKS is a fully managed service that

allows organizations to run Kubernetes without worrying about the underlying

infrastructure.

● Seamless AWS Integration

EKS integrates deeply with other AWS services, such as Elastic Load Balancing,

Amazon VPC, IAM, and CloudWatch. These integrations provide developers with the

tools to build secure, scalable, and observability-friendly applications. For example,

IAM roles and policies make it easy to manage granular access controls for Kubernetes

workloads.

● Scalability & Performance

EKS supports horizontal scaling of worker nodes using tools like the Kubernetes

Cluster Autoscaler or AWS-native services like the EC2 Auto Scaling group.

Developers can also use managed node groups to simplify the lifecycle management

of nodes, enabling faster scaling operations.

● Deployment Automation

Automating deployments in EKS is seamless due to its compatibility with CI/CD tools

and AWS services like CodePipeline and CodeDeploy. These tools streamline the

process of building, testing, and deploying applications. Features like rolling updates

and blue-green deployments can be implemented to achieve zero downtime during

deployments.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 361

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

● High Availability

Amazon EKS offers high availability out of the box. The service automatically

distributes Kubernetes control plane components across multiple Availability Zones,

ensuring that failures in a single zone do not impact the cluster. This multi-zone setup

is crucial for maintaining uptime, particularly for mission-critical applications.

● Security & Compliance

EKS enhances Kubernetes' security by leveraging AWS's robust security features.

Workloads are isolated within VPCs, and encryption options are available for data in

transit and at rest. IAM roles for service accounts allow fine-grained permissions,

improving the security posture of applications running in the cluster.

2.3 Why EKS for Zero-Downtime Deployments?

EKS makes Kubernetes deployments smoother and more predictable, especially when aiming

for zero downtime. By leveraging Kubernetes’ rolling updates and integrating AWS-native

tools, teams can automate complex workflows with confidence. The ability to scale

applications up or down seamlessly, coupled with EKS's reliability and integration with

monitoring tools like CloudWatch, makes it an excellent choice for modern, cloud-native

deployments.

Amazon EKS combines Kubernetes' flexibility with AWS's reliability, enabling teams to

innovate faster without compromising on stability or scalability.

3. Deployment Strategies Overview

When it comes to deploying applications in Kubernetes, particularly on a platform like

Amazon EKS (Elastic Kubernetes Service), the deployment strategy you choose can

significantly impact your application's performance, availability, and user experience. Let’s

break down some of the most popular deployment strategies, looking at their pros, cons, and

the scenarios they best suit.

3.1 Rolling Update

The new version of the application is gradually deployed by replacing old pods with new

ones. This ensures there’s always some capacity to handle user requests.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 362

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

3.1.1 Pros:

● A safe option for production environments.

● Zero downtime, as some old pods remain active while new ones are brought online.

● Easy rollback if the new version has issues, as Kubernetes supports version history.

3.1.2 Cons:

● Risks inconsistent states during the transition if the new and old versions are not fully

compatible.

● Can be slower, especially for large deployments.

3.1.3 Best for:

● Production systems where availability is critical.

● Applications that can handle mixed versions during the transition.

3.2 Recreate Deployment

This is the simplest deployment strategy. The old version of the application is stopped

entirely, and the new version is deployed. It’s as straightforward as it sounds—no overlap, no

complex orchestration.

3.2.1 Pros:

● Simple and easy to implement.

● Suitable for non-critical applications where downtime is acceptable.

● Minimal resource usage since only one version is running at a time.

3.2.2 Cons:

● Causes downtime during the transition, as the application is unavailable while the

new version is deployed.

● Unsuitable for production environments or systems requiring continuous availability.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 363

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

3.2.3 Best for:

● Development or test environments.

● Applications with low user impact or internal systems where temporary downtime is

acceptable.

3.3 Blue-Green Deployment

Two separate environments (blue and green) are maintained. The "blue" environment is the

current live version, while the "green" environment is the new version. Traffic is switched to

the green environment only after verification.

3.3.1 Pros:

● Easier rollback, as the blue environment remains untouched and can instantly resume

handling traffic.

● Provides a seamless switch with no downtime.

● Excellent for verifying the new version in a real-world environment before making it

live.

3.3.2 Cons:

● Expensive, as you need to maintain two full environments.

● Higher resource usage, which may not be cost-effective for smaller applications.

3.3.3 Best for:

● Scenarios requiring rigorous testing before release.

● High-stakes deployments where downtime is unacceptable.

3.4 A/B Testing Deployment

A/B testing is somewhat similar to canary deployment but focuses on delivering different

versions of the application to different groups of users simultaneously. This strategy is mainly

used for user experience or performance testing.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 364

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

3.4.1 Pros:

● Allows for precise targeting of changes to specific user groups.

● Provides detailed insights into user behavior and preferences.

3.4.2 Cons:

● Not ideal for back-end services or changes unrelated to user experience.

● Requires sophisticated traffic routing & monitoring tools.

3.4.3 Best for:

● Marketing campaigns or feature testing scenarios.

● Front-end applications where user interaction is critical.

3.5 Canary Deployment

Canary deployments involve rolling out the new version to a small subset of users initially. If

the new version performs well, it is gradually scaled up until it replaces the old version

entirely.

3.5.1 Pros:

● Highly controlled rollout, minimizing risk.

● Easy to roll back if issues arise in the early stages.

● Allows real-world testing on a small scale.

3.5.2 Cons:

● Requires robust monitoring & logging to identify issues quickly.

● Complex to configure & monitor.

3.5.3 Best for:

● Frequent updates where small, iterative changes are preferred.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 365

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

● Applications with a large user base where testing changes on a small audience can

mitigate risks.

3.6 Shadow Deployment

Shadow deployments allow you to run the new version alongside the old one, but the new

version does not serve live traffic. Instead, it processes a copy of real traffic for testing

purposes.

3.6.1 Pros:

● Can uncover issues not found during local or staging tests.

● Ideal for performance testing and validating changes without impacting users.

3.6.2 Cons:

● Requires advanced routing & monitoring to simulate live conditions accurately.

● Adds resource overhead, as the new version runs in parallel.

3.6.3 Best for:

● Systems where reliability & performance are critical.

● Large-scale applications where traffic patterns need to be analyzed before making a

switch.

4. Blue-Green Deployment

Blue-green deployment is a technique designed to achieve seamless software updates with

zero downtime, ensuring users are unaffected by the rollout process. It is particularly useful

in Kubernetes environments such as Amazon Elastic Kubernetes Service (EKS), where

applications are often containerized and highly dynamic. Let’s dive into what blue-green

deployments are, how they work, and a step-by-step guide to implementing them in EKS.

4.1 How Blue-Green Deployments Work?

A blue-green deployment separates your application into two environments: the "blue"

environment represents the live version currently serving traffic, while the "green"

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 366

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

environment houses the new version being prepared for release. This separation ensures that

any changes introduced to the green environment can be validated before transitioning users

from blue to green.

If issues arise after deployment, you can revert traffic back to the blue environment,

minimizing the impact on users. This rollback capability makes blue-green deployments a

reliable method for introducing changes with minimal risk.

The process begins with deploying the new version of your application to the green

environment. This step allows you to test the updates in a production-like setting without

disrupting active users. Once satisfied with the new version’s performance and stability, the

traffic is switched from the blue environment to the green one. This switchover is usually

handled through a load balancer or traffic management tool.

4.2 Implementing Blue-Green Deployments in Amazon EKS

Amazon EKS offers a managed Kubernetes service that simplifies blue-green deployments.

Here’s how you can implement this approach step by step:

● Set Up the Blue Environment

Start by ensuring your existing application (the blue environment) is deployed in EKS.

This setup involves creating Kubernetes resources such as deployments, services, and

a load balancer. The service should route traffic to the pods running the current

version of your application.

● Prepare the Green Environment

Deploy the new version of your application in a separate namespace or as a different

deployment in the same namespace. This green deployment should have its own pods,

ensuring complete isolation from the blue environment.

● Validate the Green Environment

Before switching traffic, thoroughly test the green environment. Use automated testing

scripts to verify application functionality, performance, and compatibility. Monitoring

tools like Amazon CloudWatch or Kubernetes-native solutions can provide insights

into the new version’s health.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 367

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

● Update Traffic Routing

Use your Kubernetes service or ingress controller to redirect traffic from the blue

environment to the green environment. In EKS, this can be done by updating the

service selector or leveraging tools like AWS Application Load Balancer (ALB).

● Monitor the Deployment

Once traffic is routed to the green environment, monitor user experience and

application performance. Real-time metrics can help detect potential issues early,

allowing you to take corrective action if needed.

● Clean Up the Blue Environment

After verifying the green deployment’s success, you can decommission the blue

environment. However, consider retaining it temporarily as a backup for quick

rollback if unforeseen problems arise.

4.3 Benefits & Limitations of Blue-Green Deployments

Blue-green deployments are most effective in scenarios requiring minimal downtime and high

reliability. They are particularly valuable for mission-critical applications, e-commerce

platforms, and systems where interruptions can lead to revenue loss or poor user experiences.

By leveraging EKS for blue-green deployments, you can streamline your application release

process while maintaining a seamless experience for your users. With the right planning and

tools, this strategy ensures your updates are rolled out with confidence and reliability.

While the benefits of zero downtime, easy rollbacks, and enhanced testing are compelling,

there are limitations to consider. Maintaining two environments simultaneously can increase

resource costs, and implementing this strategy may require more sophisticated infrastructure

and management. Nevertheless, for organizations prioritizing stability and user satisfaction,

blue-green deployments in EKS offer a robust solution.

5. Canary Deployment in EKS

5.1 How Canary Deployments Work?

A canary deployment involves rolling out changes to a small subset of users before releasing

the update to the broader audience. This approach helps validate the changes in a controlled

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 368

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

environment, reducing the risk of widespread failures. By monitoring the performance and

stability of the application with the initial set of users, teams can make informed decisions

about whether to proceed with the deployment or roll back the changes.

This approach allows for real-time feedback, minimizing the blast radius of potential issues.

Kubernetes, with its robust ecosystem and flexibility, is an ideal platform for implementing

canary deployments, especially on Amazon EKS, which provides managed Kubernetes

clusters with deep integration into AWS services.

The workflow of a canary deployment typically begins with deploying the updated version

of an application to a small fraction of the production environment, often referred to as the

"canary" version. Traffic is gradually shifted from the older version to the new one, usually in

predefined increments. At each step, metrics such as latency, error rates, and throughput are

closely monitored. If the new version performs as expected, the deployment progresses;

otherwise, the system can revert to the stable version quickly.

5.2 Automating Canary Deployment with Tools like Argo Rollouts

Manually managing canary deployments can be cumbersome, especially in complex

environments. This is where tools like Argo Rollouts come into play. Argo Rollouts extends

Kubernetes’ native capabilities, enabling advanced deployment strategies such as canaries,

blue-green deployments, and more.

To set up a canary deployment using Argo Rollouts in EKS, the process typically starts with

defining a custom resource called a Rollout. This resource specifies the desired deployment

strategy, traffic allocation steps, and metrics to monitor. Once applied to the cluster, Argo

Rollouts manages the deployment lifecycle automatically. It works seamlessly with ingress

controllers or service meshes like Istio to direct traffic between the old and new versions of

the application.

Argo Rollouts simplifies the process by automating traffic management and providing built-

in monitoring capabilities. When integrated into Amazon EKS, it allows teams to define

rollout strategies as Kubernetes manifests, ensuring consistency and repeatability.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 369

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

By leveraging these capabilities, teams can focus more on the quality of their updates rather

than the mechanics of the deployment process. This automation is particularly valuable in

dynamic environments where scaling and frequent updates are the norm.

A key advantage of using Argo Rollouts is its observability. The tool integrates with

monitoring systems like Prometheus to evaluate metrics in real time. If performance degrades,

Argo can pause or roll back the deployment based on predefined thresholds, ensuring

minimal disruption. Moreover, its compatibility with Kubernetes labels and selectors enables

fine-grained control over how updates are rolled out to specific workloads or user segments.

5.3 Advantages & Monitoring

Canary deployments bring several benefits to the table. First, they mitigate risks by exposing

changes to a small audience before a full rollout. This not only protects the user experience

but also builds confidence in the release process. Second, they offer an opportunity to test real-

world scenarios that are hard to replicate in staging environments, enabling quicker detection

of issues.

Automating canary deployments in Amazon EKS using tools like Argo Rollouts is a powerful

way to ensure smooth and reliable updates. It reduces risks, enhances operational efficiency,

and aligns with the principles of modern DevOps practices.

Real-time monitoring plays a crucial role in this process. Tools like Prometheus and Grafana

provide actionable insights into application health, while Argo Rollouts ensures these metrics

are used effectively during the deployment. By combining robust monitoring with automated

rollouts, organizations can achieve zero-downtime deployments with confidence.

6. Progressive Delivery in EKS

6.1 What Is Progressive Delivery?

Progressive delivery is a deployment strategy that shifts application updates to users

incrementally, rather than all at once. This approach minimizes risks, enabling teams to catch

issues early and recover quickly without impacting the majority of users. Think of it as a safety

net for rolling out changes in complex systems.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 370

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

The relevance of progressive delivery has skyrocketed with the rise of microservices and

containerization. Kubernetes, the de facto standard for container orchestration, plays a pivotal

role here. Its robust ecosystem and declarative nature align perfectly with the principles of

progressive delivery. When paired with Amazon EKS, a managed Kubernetes service,

organizations can deploy changes with confidence while benefiting from Amazon’s cloud

scalability and security.

Progressive delivery builds on traditional techniques like canary deployments, blue-green

deployments, and feature flags, but takes them further by incorporating automation and

advanced observability. For instance, rather than manually directing 10% of traffic to a new

version, tools can automate the process based on predefined metrics, making deployment

safer and more efficient.

In an era where user expectations are higher than ever, downtime or buggy releases can have

significant repercussions. Progressive delivery mitigates these risks by allowing small batches

of users to experience changes first. Observability tools can then monitor key metrics—like

latency, error rates, and user feedback—before gradually increasing the rollout.

6.2 Automation with Tools: Flagger & Argo Rollouts

Automation is the heart of progressive delivery, and tools like Flagger and Argo Rollouts

simplify the process in Kubernetes environments. These tools bring advanced traffic

management and observability capabilities, making it easy to implement sophisticated

deployment strategies on Amazon EKS.

6.2.1 Argo Rollouts

Argo Rollouts is another powerful tool for progressive delivery. It offers advanced

deployment strategies, including canary, blue-green, and even experimentation-driven

rollouts. One of Argo Rollouts’ standout features is its integration with monitoring systems

like Prometheus and Datadog, which ensures real-time health checks during deployments.

On Amazon EKS, Argo Rollouts benefits from the scalability and reliability of the AWS cloud.

Combined with EKS's managed Kubernetes control plane, Argo Rollouts can help teams

achieve smooth, zero-downtime deployments with minimal manual intervention.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 371

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

Argo Rollouts provides a declarative way to define your deployment strategies through

Kubernetes manifests. For instance, you can specify phases such as “route 10% of traffic to the

new version, wait for 10 minutes, and proceed if metrics are healthy.” This level of precision

and automation makes Argo Rollouts ideal for managing deployments at scale.

6.2.2 Flagger

Flagger gradually shifts traffic to the new version while monitoring these metrics. If any issues

arise, it can halt or roll back the deployment automatically. This hands-free approach not only

saves time but also reduces stress for developers. On Amazon EKS, Flagger leverages

Kubernetes primitives like Custom Resource Definitions (CRDs), making it easy to configure

and scale.

Flagger is a Kubernetes operator designed to automate canary and blue-green deployments.

It integrates seamlessly with popular ingress controllers and service meshes like Istio and

Linkerd. With Flagger, you can define metrics that determine the health of your application.

For example, you might set conditions such as “roll back if error rates exceed 2%” or “proceed

only if latency stays below 100ms.

6.3 Real-World Scenarios

Consider an e-commerce platform running on Amazon EKS. During a Black Friday sale, the

team wants to deploy a new recommendation algorithm without risking downtime. Using

Flagger, they can implement a canary deployment that directs 5% of traffic to the updated

service. By monitoring key metrics like cart additions and conversion rates, they ensure the

new version performs as expected.

Progressive delivery is a game-changer for organizations aiming to deliver quality updates

without compromising reliability. Tools like Flagger and Argo Rollouts, combined with the

power of Kubernetes and Amazon EKS, empower teams to automate and optimize their

deployment pipelines. As applications grow more complex, these practices will remain

essential for maintaining user trust and business continuity.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 372

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

A fintech application might use Argo Rollouts to deploy a feature update for its payment

gateway. By splitting traffic gradually and observing metrics like transaction success rates,

the team can ensure a seamless user experience while safeguarding sensitive operations.

7. Best Practices for Zero-Downtime Deployments

Achieving zero-downtime deployments in Kubernetes on Amazon EKS is essential for

maintaining seamless user experiences. By combining strategic traffic management, robust

rollback strategies, and continuous monitoring, you can ensure reliable and efficient

application updates. Let’s break down these practices in detail:

7.1 Traffic Management: Role of Service Mesh

Traffic management is a cornerstone of zero-downtime deployments, allowing you to control

how requests flow to your application during updates. Service meshes like Istio and Linkerd

play a pivotal role in this process by offering advanced traffic routing, load balancing, and

observability capabilities.

Service meshes also enable powerful resilience features like circuit breakers and retries, which

prevent cascading failures during updates. By combining these capabilities with Kubernetes’

native readiness probes, you can ensure that only healthy pods receive traffic, further

reducing the chance of downtime.

With Istio, you can use traffic-splitting to gradually shift users from an old version of a service

to a new one. This "canary deployment" approach lets you test the new version with a small

percentage of live traffic, minimizing risk while gathering real-time feedback. Similarly,

Linkerd simplifies the process by providing out-of-the-box tools for safe rollouts and retries,

ensuring your application remains accessible even if something goes wrong.

7.2 Rollback Strategies: Safe Rollback Techniques

Despite careful planning, things can occasionally go wrong during deployments. That’s why

having a safe and well-tested rollback strategy is crucial.

The effective strategy is blue-green deployments. In this method, two environments—one

“blue” (current version) and one “green” (new version)—run in parallel. Traffic is directed to

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 373

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

the blue environment while the green environment is prepared. Once the green environment

is fully validated, traffic is switched over seamlessly. If issues arise, you can instantly roll back

by reverting traffic to the blue environment.

The simplest rollback technique is using Kubernetes’ built-in Deployment object, which

automatically tracks previous revisions. If an issue arises, you can revert to a stable version

with a single command, restoring service quickly. However, this approach requires thorough

testing and validation of each new version before deployment to avoid propagating issues.

For canary deployments, rollback can involve halting traffic to the canary pods and directing

it back to the stable version. Coupled with a service mesh, this rollback process can be

automated and executed without user impact.

7.3 Continuous Monitoring: Tools & Alerting Mechanisms

Pair these tools with robust alerting mechanisms using platforms like Alertmanager or

PagerDuty. Configuring alerts for critical thresholds ensures your team is notified of

anomalies immediately, allowing for rapid response. Proactive monitoring combined with

effective alerting minimizes risks and supports seamless zero-downtime deployments.

Continuous monitoring is essential for detecting and resolving issues before they affect users.

Tools like Prometheus and Grafana provide real-time metrics and dashboards, enabling you

to monitor key performance indicators such as response times and error rates. For logging,

solutions like Fluentd or AWS CloudWatch Logs can help trace issues to their source.

8. Conclusion

Zero-downtime deployments have become a cornerstone of modern software delivery,

enabling organizations to meet user expectations for uninterrupted service consistently. In

today’s fast-paced world, where customer satisfaction directly impacts success, ensuring that

applications remain available even during updates is more crucial than ever. Combined with

the robust capabilities of Amazon EKS, Kubernetes has emerged as a powerful platform to

achieve this, offering the scalability, resilience, and automation necessary for effective

continuous integration and delivery (CI/CD) workflows.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 374

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

Methods like blue-green deployments, canary releases, and progressive delivery are pivotal

in minimizing risks and ensuring seamless application updates. Blue-green deployments

allow teams to easily switch between environments, reducing the chances of disruptions

during rollouts. Canary releases enable incremental updates, exposing new features to a

subset of users and ensuring issues can be detected early without impacting the entire user

base. Progressive delivery takes these principles further by automating gradual rollouts with

intelligent traffic routing and feedback loops, perfect for applications with high user traffic or

frequent updates.

Each strategy has its strengths, and the choice depends on factors like team expertise,

application complexity, and user expectations. Due to their straightforward architecture,

teams new to Kubernetes might find blue-green deployments easier to implement. Canary

deployments balance agility and control for applications requiring frequent, minor updates.

Progressive delivery, while requiring more advanced tools and processes, offers unparalleled

automation and insight for large-scale systems.

To determine the best fit, teams should consider their deployment frequency, risk tolerance,

and application criticality. Investing in monitoring and observability tools will complement

these strategies, helping to detect anomalies quickly and ensure that deployments meet

performance benchmarks.

As the DevOps ecosystem evolves, exploring and experimenting with automation tools in

Kubernetes and Amazon EKS is worthwhile. Tools like Argo CD, Flagger, and Jenkins can

further streamline your workflows and open up opportunities for innovation in deployment

practices.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 375

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

The journey toward zero-downtime deployments is not just about adopting tools or

methodologies—it’s about fostering a culture of continuous improvement. So, start small,

iterate often, and leverage the powerful capabilities of Kubernetes and EKS to build systems

that delight your users. Dive deeper, learn from the community, and don’t hesitate to

experiment—each step will bring you closer to mastering deployment automation and

achieving operational excellence.

9. References

1. Arundel, J., & Domingus, J. (2019). Cloud Native DevOps with Kubernetes: building,

deploying, and scaling modern applications in the Cloud. O'Reilly Media.

2. Garbarino, E. (2019). Beginning Kubernetes on the Google Cloud Platform: A Guide to

Automating Application Deployment, Scaling, and Management. Apress.

3. Sayfan, G. (2019). Hands-On Microservices with Kubernetes: Build, deploy, and manage

scalable microservices on Kubernetes. Packt Publishing Ltd.

4. Radeck, L. (2020). Automated deployment of machine learning applications to the cloud

(Master's thesis).

5. Gade, K. R. (2017). Integrations: ETL/ELT, Data Integration Challenges, Integration

Patterns. Innovative Computer Sciences Journal, 3(1).

6. Sayfan, G. (2018). Mastering Kubernetes: Master the art of container management by using

the power of Kubernetes. Packt Publishing Ltd.

7. Gade, K. R. (2019). Data Migration Strategies for Large-Scale Projects in the Cloud for

Fintech. Innovative Computer Sciences Journal, 5(1).

8. Khatri, A., & Khatri, V. (2020). Mastering Service Mesh: Enhance, secure, and observe cloud-

native applications with Istio, Linkerd, and Consul. Packt Publishing Ltd.

9. Ward, B., & Ward, B. (2019). SQL Server on Kubernetes. SQL Server 2019 Revealed:

Including Big Data Clusters and Machine Learning, 249-295.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 376

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

10. Arundel, J., & Domingus, J. (2019). Cloud Native DevOps mit Kubernetes: Bauen,

Deployen und Skalieren moderner Anwendungen in der Cloud. dpunkt. Verlag.

11. Radek, Š. (2020). Nepřetržitá integrace a nasazení aplikací s technologií Kubernetes

(Bachelor's thesis, České vysoké učení technické v Praze. Vypočetní a informační centrum.).

12. Katari, A. Conflict Resolution Strategies in Financial Data Replication Systems.

13. Kuepper, R. (2020). Hands-On Swift 5 Microservices Development: Build microservices for

mobile and web applications using Swift 5 and Vapor 4. Packt Publishing Ltd.

14. Diniz, H. F. F. D. S. (2020). Multi-Concession Cloud-Based Toll Collection and Validation

System (Doctoral dissertation).

15. Mulligan, D. (2020). Results tracker app and deployment on EKS (Elastic Kubernetes

Service).

16. Thumburu, S. K. R. (2020). Enhancing Data Compliance in EDI Transactions. Innovative

Computer Sciences Journal, 6(1).

17. Thumburu, S. K. R. (2020). Interfacing Legacy Systems with Modern EDI Solutions:

Strategies and Techniques. MZ Computing Journal, 1(1).

18. Gade, K. R. (2020). Data Mesh Architecture: A Scalable and Resilient Approach to Data

Management. Innovative Computer Sciences Journal, 6(1).

19. Gade, K. R. (2018). Real-Time Analytics: Challenges and Opportunities. Innovative

Computer Sciences Journal, 4(1).

20. Katari, A. Conflict Resolution Strategies in Financial Data Replication Systems.

21. Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive

Strategies for Secure Online Account Opening.

22. Komandla, V. Transforming Financial Interactions: Best Practices for Mobile Banking App

Design and Functionality to Boost User Engagement and Satisfaction.

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

Journal of AI-Assisted Scientific Discovery
By Science Academic Press, USA 377

Journal of AI-Assisted Scientific Discovery

Volume 1 Issue 2
Semi Annual Edition | July - Dec, 2021

This work is licensed under CC BY-NC-SA 4.0

23. Gade, K. R. (2017). Migrations: Challenges and Best Practices for Migrating Legacy Systems

to Cloud-Based Platforms. Innovative Computer Sciences Journal, 3(1).

24. Thumburu, S. K. R. (2020). Exploring the Impact of JSON and XML on EDI Data Formats.

Innovative Computer Sciences Journal, 6(1).

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd

