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1. Introduction 

From communicating with spacecraft billions of miles away to recognizing spoken language 

for people with disabilities, artificial intelligence (AI) has become a keystone in complex 

systems in recent years. Fully autonomous and AI-enhanced self-driving car navigation have 

received growing attention. In adverse weather conditions or high-temperature cities, one of 

the biggest challenges that autonomous vehicles encounter is the "Rain-Blindness Effect," 

where the perception system may fail to function normally due to torrential rain or dust 

storms. 

Real-time navigation systems play a crucial role in many practical applications, such as 

autonomous vehicles and networked pedestrian navigation. A real-time system can 

accomplish rapid responses to sudden emergencies, such as traffic jams or severe climate 

conditions. Considering the striking advantages of real-time navigation systems, our work is 

dedicated to integrating robust AI enhancement algorithms to facilitate real-time 

performance. These algorithms allow the system to adapt to different scenarios and boost the 

competence of the navigation platform. However, in recent years, end-to-end models and 

reinforcement learning have become increasingly popular, and we believe that a pivot in the 

current trends back to the full real-time paradigm would have far-reaching consequences. 

Despite the evident high computational and data complexity, a real-time AI-enhanced 

navigation system would complement the holistic view presented in this essay, 

demonstrating strong potential to become a successful competent model in real-time 

navigation scenarios. For machines to operate in the real world, the success of real-time 

navigation tasks is more sensitive to the performance of the system. Furthermore, the growing 

trends toward assisted autonomous driving have also made the fast and robust completion of 

decision makers and controllers important. 
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2. Challenges in Autonomous Vehicle Navigation in Adverse Weather Conditions 

Autonomous vehicles need to overcome several challenges to ensure safe driving under 

adverse weather conditions. Weather deteriorates visibility drastically, which becomes one of 

the main challenges. Sensor performance can degrade due to environmental factors like fog, 

rain, and snow. Fog creates additional reflections, resulting in reduced contrast for the image 

and significant loss of texture. Rain creates water droplets on the windshield, limiting 

visibility for human drivers. Similarly, due to the adherence of snowflakes on the windshield 

glass, it is required to be constantly cleaned or defrosted. Images captured under snowfall 

experience loss of texture and edge sharpness, blurring, and pixel saturation. Additionally, 

during snowfall, frost gets stuck and melts on camera lenses, degrading visibility. 

Furthermore, in areas with periodic snow, snowflakes accumulate on the edges of the lidar 

lens, reflecting light and casting shadows on the sensors, affecting scan measurements. 

Wet and slippery road conditions during either icy or rainy weather lead to loss of tire-road 

contact and hence inadequate vehicle control, inducing skidding or aquaplaning, affecting 

vehicle stability. Also, these conditions potentially reduce the ability of decision-making in 

handling risks and managing dynamic scenarios. At high rates, rain can also reduce traction 

and grip with the road. Additionally, roads having partially cleared snow contain the main 

road plus the accumulated hard snow and ice on both untreaded and semi-cleared areas, 

further making navigation challenging and potentially hazardous. An understanding of these 

challenges is critical to the development of necessary solutions. In the recent past, many 

technological interventions have been made to address challenges in hazardous weather 

conditions with the assistance of real-time AI enhanced systems. 

2.1. Limited Visibility 

In the case of adverse weather, precipitation and environmental factors cause the visual field 

of drivers and their vehicles to diminish considerably. This is also a critical challenge for 

autonomous vehicles. For autonomous vehicles, an insufficient range of sensor data 

acquisition can be deduced from diminishing visibility. For example, snow, fog, rain, and 

combinations of them can drastically reduce the range of visual sensors. In these cases, the 

performance and/or reach of LiDAR, radar, etc., can exceed that of visual sensors. Moreover, 

weather phenomena in combination with direct sunlight can cast dynamic alternating 
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shadows. Adverse weather can obscure distant parts of the environment. Furthermore, poor 

visibility negatively impacts decision-making: the reduction in contextual experiential data 

can hamper vehicle navigation and control. Due to the exponential size of semantic feature 

spaces, standard algorithms in the decision-making process can misinterpret the surrounding 

environment with possibly unknown or rarely experienced data per weather phenomenon. 

AI algorithms lend themselves to solving this problem since training data can contain 

abundant empirical experiences of all possible adversities. Both the big data ecosystem and 

powerful hardware foundations make adopting AI technology a viable strategy to 

complement AV vision systems. Recent advances in sensor technology indicate micro- and 

nanometer sensors will become cost-effective in consumer-grade autonomous vehicles. Ultra-

sensitive, high-speed camera sensors have become affordable. Stacking multiple high-speed 

frames within the limits is one way to counteract the impact of adverse weather on the 

reduction of visual data. For a few frames per obstacle, there are two possible sets of initial 

conditions. 

2.2. Slippery Road Conditions 

Adverse weather and road conditions are the main factors that determine slippery road 

surfaces. Among various possible weather elements such as rain, snow, and ice, it is possible 

to evaluate the traction loss through observation of the perpendicular force applied to the road 

surface, which represents the normal force, proportional to the weight of the vehicle. The 

coefficient between frictional tangential force and nominal perpendicular force is taken as the 

absolute value, resulting in the physical meaning of the coefficient of friction. 

The consequence of low-traction hazardous road conditions on vehicle dynamics and stability 

is serious. For instance, water film or ice can cause slippery surfaces and impede tire friction 

force, followed by vehicle longitudinal and lateral motion patterns, such as skidding, tire lock, 

and traction loss. The optimal tire friction can be achieved by rapid adaptation and trajectory 

planning, such as steering angles and given portions of the front and rear tire torques. 

Violence in tire or wheel dynamics is the subject of path tracking control, which represents 

spinning and skidding phenomena. Consequently, advancements in vehicle chassis control 

systems exist to enhance safety and functions. Therefore, it can be seen that real-time vehicle 

adaptation to road surfaces reduces travel time of the vehicle and prevents traffic accidents. 
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In summary, there have been many previous studies in the field of vehicle slip angle change 

subject to diverse road weather conditions. Advanced driver assistance systems and the 

autonomous driving industry have also integrated these slip angle estimation and control 

systems. These controllers improve vehicle chassis control algorithms rapidly to increase 

trajectory accuracy. Sensory technologies embedded in these control systems include road 

sensor cameras, LiDAR, stereo vision cameras, and RGBD glasses. Despite the real-time 

monitoring of the wet road, it is important to evaluate the state and value of sensor failure. 

Alternative control algorithms utilize the old Kalman pattern filter. However, machine 

learning has proposed a new controller using common sensor systems. 

3. State-of-the-Art AI Technologies in Autonomous Driving 

The application of AI technologies in autonomous driving plays a pivotal role in the 

implementation of intelligent navigation systems. Machine learning, and more specifically, 

deep learning models, have been adopted to design decision-making systems for autonomous 

vehicles. Machine learning models can learn data patterns that characterize driving strategies. 

Hence, decision-making systems can continuously improve their behavior by learning new 

scenarios without the need for human intervention. On the other hand, in the autonomous 

driving paradigm, the use of deep learning models is not limited to the environment 

perception task. Convolutional and recurrent architectures are being adopted together for the 

processing of RGB-depth inputs, enhancing their use for scene assessment, motion 

compensation processes, and identification of an environment's occupancy. Deep learning 

architectures that process depth data are able to discern relevant features for an autonomous 

vehicle's path planning, which makes AI technologies a good candidate for overcoming the 

challenges of system operation under harsh atmospheric conditions. 

Recent studies have tackled real-time system operation for navigation tasks within diverse 

environments and conditions. In the current state of the art, machine learning techniques have 

been recently applied for optimal trajectory generation based on the combination of a multi-

objective evolutionary-based approach with reinforcement learning models in autonomous 

racing vehicles operating under harsh atmospheric conditions. The navigation capabilities of 

an autonomous ground vehicle were improved using a hybrid technique combining fuzzy-

SLAM mapping patterns and an artificial potential field algorithm. Additionally, an in-depth 
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insight into autonomous systems using extraordinary sensors in the field of view of deep 

learning models to process complex inputs, such as camera data, is of considerable interest. 

Hence, a model that supports autonomous vehicle technologies in forest environments was 

developed by conducting experiments with a UAV throughout an area with dense vegetation. 

3.1. Machine Learning 

Machine learning, specifically artificial intelligence, has made remarkable strides and is 

widely used in modern artificial driving systems. With the availability of quantum 

computing, robust artificial intelligence algorithms will significantly improve navigation 

accuracy as well as computational efficiency. Machine learning uses various algorithms or 

techniques to produce a model or series of interconnected models that will effectively qualify 

a system to make future predictive analyses based on historical data. There are three main 

approaches or types of machine learning: (a) supervised learning, (b) reinforcement learning, 

and (c) unsupervised learning. 

Machine learning algorithms can make an AD system learn from vehicle data, determine 

whether a vehicle is driving in dry or adverse weather, and store data based on decisions 

made. However, there are still obstacles in the implementation of an ML model in practical 

driving with bad weather, and the results cannot be simply generalized. For instance, a model 

trained with high-quality datasets might not give satisfactory results when implemented in 

real-world settings. Several successful case studies have been shown in which the machine 

learning algorithms essentially help further refine the car's perception, making the model 

memory rather efficient for decision-making. Some pilot-tested studies are now at a practical 

stage for artificial driving with bad weather, but this technology likely needs time to mature. 

3.2. Deep Learning 

Deep learning is an advanced subset of machine learning using huge neural networks with 

multiple layers of processing units, also known as artificial neural networks or multi-layer 

perceptrons. Deep learning performs automatic feature extraction and selection from the 

input data. The architectures of deep learning networks are connectionist systems based on 

networks having adaptable weights that can be trained through progressive exposures to 

complicated input and output conditions while improving parameters like weights and 
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biases, from which deep learning networks build a hierarchy of low to high-level features or 

representations. Convolutional Neural Networks constitute a subfield of deep learning 

networks that learn from raw pixel data, allowing one to skip employing traditional image 

processing. In comparison with machine learning, the deep learning network is able to work 

with a large volume of imbalanced sensor data, including a wide variety of driving conditions 

like snowy or foggy weather. These networks operate over a wide range of data without 

requiring pre-conditioning to achieve accurate pattern recognition. 

Deep learning models are usually composed of multiple processing layers, which are used to 

learn varied features of input data. CNN, for example, learns spatial hierarchies and inherent 

features of multi-dimensional inputs drawn from local receptive fields. Since these models 

employ many connected elements, they are capable of processing large datasets robustly and 

are less susceptible, compared to shallow learning, to detecting patterns characterizing many 

visual objects and decision-making. However, developing deep learning comes with some 

challenges, such as the accuracy of the models that could result in misinterpretation from 

oversimplification and overfitting or could require computational resources for robustness. 

Advantages of CNN and deep learning model structures have made them successful and 

prominent in the implementation of autonomous navigation systems for real-time 

applications. Deep neural networks, especially CNNs, have demonstrated high performance 

in real-time perception tasks and navigation control for autonomous vehicles. The recent 

success of training and employing deep networks can be highlighted by outstanding 

performance in object recognition. A huge variety of deep networks has applications in 

computer vision, some with dramatic improvements on visual datasets. The introduction of 

the deep CNN was a turning point at the visual recognition challenge, which led to a drastic 

decrease in the top-5 test error. There are a variety of successful deep neural network 

architectures, which have shown significant gains on large-scale visual recognition tasks. The 

implementation of these deep neural network architectures showed very competitive 

performance compared to other potential commercial systems in autonomous vehicle 

challenges. Surveys of the state-of-the-art literature have shown that various architectures 

have further advantages, which led to their successful implementation in some commercial 

cars and have resulted in positive failure measures related to perception. 

4. Real-Time Data Collection and Processing for Autonomous Navigation 
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Real-time data collection is paramount for unmanned vehicle navigation systems. Timely 

acquisition of data from onboard sensors is of utmost importance in navigating the vehicle. It 

enables timely decision-making to navigate the vehicle between its source and destination 

while avoiding any obstacles in the path. Sensor data can be collected from various sources, 

like vision cameras, radar, and lidar systems. Processing of raw sensor data alone does not 

provide situational awareness one would require for navigating in adverse weather. It is 

essential to use multiple sensors together as their information is inherently rich in overlapping 

aspects. This approach is generally termed 'sensor fusion.' When combined, the information 

complementation leads to improved quality of the processed data when compared to 

individual sensor data. The common sensors used to gather real-time data in an autonomous 

vehicle are cameras, lidar, and radar. Each of these sensors provides unique and 

complementary information to enable the vehicle to perform inside-out sensing, have an 

accurate perception of the surroundings, and hence evade accidents. 

When used in this fashion, the quality of the training data employed to calibrate the system 

significantly improves, leading to a reduction in the system's training time. Data 

preprocessing is used to clean the dataset by removing irrelevant data, reducing noise in the 

signal, or amplifying features. Irrelevant data collected is discarded, thus allowing larger 

amounts of data to be handled. However, the collection and processing of real-time data are 

one of the main operational areas that are overrun with challenges. The process starts with 

transmitting sensor data to onboard computing units, then several other challenges arise, 

including (1) dealing with the huge amount of processed data, (2) the timely transportation of 

raw sensor data to the processing units onboard, (3) computational requirements for 

processing the data, and (4) challenges involved in developing efficient algorithms intended 

to process larger subsets of real-time data that are responsible for making high-precision 

timely decisions. 

4.1. Sensor Fusion 

Fusing data from diverse sensor modalities is a popular technique to improve the capability 

of autonomous navigation systems. By using maximum data about the environment, the 

perception of the host vehicle can be improved drastically. Different sensor modalities have 

different notions about the environment, which ultimately gives rise to complementary data. 
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This is the sole reason for integrating data from different sensors. For example, the LIDAR 

produces a fine-grained 3D point cloud, while the camera can produce colored images and 

can be used for texture mapping, and the radar has better resistance against weather 

afflictions. The techniques used for integrating data from central LIDAR, front camera, and 

front radar are discussed. These methodologies are designed considering the features of 

sensors and the intricate architecture with which the framework is implemented. This itself is 

beneficial for online applicability. 

The use of decentralized methodologies with an additional front camera and front radar 

sensor can enable feature-complete sensing capability not just in indoor environments, but 

outdoors as well, which is useful in inclement weather. Utilization of all sensor modalities has 

been revealed to yield a lower RMSE in path length with fewer chances of running out of the 

track. The presence of all sensors can act as a fail-safe in harsh environmental conditions. The 

confidence values from all sensors can be aggregated and compared to get a more coherent 

result before making trajectory decisions. Additionally, the fusion of the three sensors can 

account for excessive noise or volume variations in one sensor. Signal processing and AI block 

outputs are fused through a weighted average method. Sensor data and processor outputs are 

fused in real-time, which makes the algorithm suitable for being embedded on edge devices. 

There are many techniques and algorithms available when it comes to sensor fusion for real-

time AI-driven uncertain environments. Dead reckoning and Kalman filters are quite popular 

as real-time robot localization is facilitated by IMU and encoders. Sensor noise-free 

observations are obtained using these algorithms. A neural network, too, is employed to solve 

the two-dimensional inverse problem. Additionally, a neural network was utilized for 

dynamic object avoidance that used the depth map and image to make a smooth trajectory. 

Most of these algorithms were employed solely for a single modality sensor, while our focus 

here lies on a fusion of LIDAR, camera, and radar. Sensor noise might have a significant 

impact if not minimized. Due to the coarse resolution and misunderstanding in ego vehicle 

speed, radar can have noise. LIDAR can also have noise due to dust particles getting incited 

in the sensor. Synchronization of this data can be difficult when applying general sensor 

fusion. The use of software delay units is frowned upon due to the need for additional 

conversion to real-time and time stamping in synchronization. Finally, these algorithms have 

also been applied but are not specifically tailored for adverse environmental conditions. It can 
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be noted that adversarial conditions have different types of latent data. Thus, applying the 

algorithm of normal sensor fusion onto adverse conditions is not straightforward. In 

summary, the integration of LIDAR and camera can alleviate the impact of adverse weather 

on single LIDAR-based navigation systems and improve system accuracy. In this section, the 

end-to-end system flow of the current system is explained in detail. 

4.2. Data Preprocessing 

Data preprocessing is a crucial step that must be completed before sensor data can be utilized 

to develop an accurate navigation system. However, raw sensor data often contains a 

significant amount of noise that leads to erroneous conclusions when used without 

moderation. The goal of data preprocessing is to ensure that the raw sensor navigation data 

is cleansed of this noise and that features relevant to navigation are effectively selected and 

extracted. In general, the procedures for data preprocessing will involve noise reduction, 

normalization, and feature extraction using informatics tools. Improving the quality of the 

data in these ways will directly serve to enhance the performance of the ML model used for 

terrain classification and navigation. Moreover, data created by different sensors typically 

have different file formats, sampling rates, and units of measurement that must be converted 

and aligned in time before being used as inputs to a navigation system. Alternatively, it will 

be necessary to align the outputs of different machine learning models that use different 

sensor data in a navigation system. The delayed temporal conditioning of the output-layer 

units of one of these models can be used to motivate the backpropagation-through-time 

learning method. Managing the aligned and pruned sensor data file sizes for efficient storage 

and access presents another challenge. Accumulating knowledge from separate test vehicle 

sensor data acquisitions using batch learning procedures to train traditional neural network 

systems could be tedious and inefficient. Therefore, it is important to develop rapid data 

reduction and ML preprocessing algorithms that can adapt to changes in weather, lighting, 

and terrain conditions. 

5. Machine Learning Models for Adverse Weather Conditions 

The development of AI-enhanced computer vision systems is a step forward in improving 

autonomous navigation systems. As with any machine learning model, there are several 

requirements and challenges that are specific to these systems or have an "adverse weather" 
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note. Variable weather conditions will introduce a host of variables and are therefore 

extremely challenging to predict. Thus, AI-enhanced solutions have proven to be very 

effective. The models to be adapted are important for varying weather and visibility 

conditions. In essence, these models should be capable of a high degree of learning. It is 

important to use the least significant and most informative amount of data for machine 

learning models that need to be satisfied with the least amount of data to be considered real-

time. There is a big difference in the fact that a machine learning model that is real-time is not 

real-time in such an application as autonomous vehicle navigation. It can have a life-

threatening impact on precise models under variable weather conditions that degrade 

decision speed. 

Several types of machine learning models can be listed to improve autonomous vehicle 

navigation systems under adverse weather and visibility. The most important machine 

learning models used in different real-world applications are presented individually below. 

Most of the mentioned works were generally conducted in the field of autonomous vehicle 

navigation and in the development of intelligent transportation systems. However, other 

applications are also addressed. These models are presented separately; machine learning is 

important for understanding applications according to the services they offer. This is followed 

by a comparative analysis of these models, considering their deficiencies and effective 

performance capabilities. In summary, it can be said that machine learning techniques have 

not yet reached the desired level for hazardous road conditions, and this application requires 

severe improvements and an increase in the safety coefficient. This factor may also require 

active contributions from the designers of hardware components. To also provide these are 

within the scope of new research opportunities and challenges. 

5.1. Convolutional Neural Networks 

Convolutional Neural Network (CNN) architecture has been demonstrated as an effective 

machine learning model for the development of sensor-based technology dedicated to 

autonomous driving. One of the strengths of CNNs is their ability to process two-dimensional 

arrays of data with a spatial topology, like images. This aspect is crucial in order to devise a 

system that can operate effectively under degraded visual conditions. In this respect, CNNs 

can be seen as an important tool for interpreting visual data when adverse weather conditions 
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have a detrimental effect on the performance of the vision systems utilized in the autonomous 

navigation of vehicles. From a scientific and technological point of view, a CNN is 

characterized by the ways in which the spatial hierarchies of the images are processed and 

feature recognition and extraction are performed. By using a wide range of different 

convolutional kernels, the CNN is able to recognize features of increasing complexity. These 

properties of the CNN also offer a potential advantage in dealing with noise and distortion, 

which typically characterize images captured in poor weather conditions. Recent deep 

learning advancements and the categorization of adversarial and robust examples have 

fostered the development of specific training techniques. These techniques can be exploited 

to minimize the so-called overfitting and, in general, to increase the generalization capabilities 

of the model that is trained. This line of research seems particularly relevant in the context of 

autonomous navigation systems because the setting of data and the real data with which it 

has to work is characterized by a high level of randomness. Similarly, the application of 

convolutional layers, max pooling, and fully connected layers has been proven invaluable in 

addressing the issues typically faced when developing accurate Cold-SDs for the detection 

and classification of foggy scenes from common color images. These problems include the 

requirement of a long training time and the heavy computational demand. 

5.2. Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) can be considered as another promising technique used 

in time-series autonomous navigation systems. Time-series data is indeed a typical 

characteristic of an autonomous vehicle's onboard system clock, speed, and motion sensors, 

all of which provide vital information to describe the overall behavior and position estimation 

for vehicles. The main motivation behind using RNNs is that RNN models can efficiently be 

employed to process sequential or time-series data. RNN models, combined with historical 

information learned from past events, are shown to be very intelligent in that they can 

concisely describe and make predictions based on sequential data trends. Moreover, 

employing more sophisticated RNNs, particularly Long Short-Term Memory (LSTM) 

networks, can reinforce the system to be more capable of catching longer dependencies in 

sequential data. 
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As time-series data carry the sequence of events involving all vehicle dynamics and 

environmental changes, being capable of modeling these changes is an indispensable 

requirement for anticipating movements and evolving structures in the corresponding 

environment. VLCs rely largely on the historical events generated from the vehicle dynamics 

and the environmental changes collected from data available from the surrounding 

environment. Using this dynamic data extensively is a key feature of autonomous operation 

systems to understand the environment around them and anticipate the prospective results. 

However, employing large LSTM units triggers the vanishing gradient problem, which is the 

most common cause of lack of learning due to overcrowding. To resolve these imposing 

challenges, the development of more advanced RNN training methods is needed to create a 

more convincing navigation system that can more accurately capture the dynamic trajectory 

of an autonomous vehicle. Thus, employing RNNs offers an efficient representation to 

enhance the overall reliability of an autonomous navigation system. 

6. Future Direction 

Real-time AI-enhanced systems for autonomous vehicle navigation in adverse weather 

conditions face several research challenges and limitations. There remains extensive room for 

improvement in dealing with different adverse weather and light conditions. Real-world case 

studies showed system robustness, but long-term repeatability and large-scale system 

validation remain open for future research. Advances in future research in autonomous 

vehicle navigation systems will be crucial to tackle adverse weather conditions. Therefore, a 

continued collaborative effort between academia, industry, and regulatory bodies is required 

to solve challenges. Possible directions for autonomous navigation research are as follows: 

advancements in sensor technology such as improved range and resolution, small low-power 

AI chipsets, processors, and memory. More accurate and faster AI algorithms and methods 

for advanced data pre-processing are required to accurately capture traffic information. 

Moreover, for a real-adaptive vehicle navigation system, new challenges include a more user-

centric design considering the mobility and information available to pedestrians. Ethical and 

safety-by-design partnerships will ensure data management strategies around vehicle 

navigation systems. In the future, if 5G and edge computing come into full commercial 

operation, it would be appropriate to integrate data from other vehicles' navigation systems 
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to improve autonomous driving in adverse conditions. In snow hazards, data from vehicle 

navigation systems ahead of the current vehicle could be used to automatically inform ADAS 

and vehicle navigation systems behind about the road hazard ahead without the possibility 

of distortion. A proactive study is required to validate the vehicle navigation system in full 

real-time operations due to the new 5G technology. After validation in snow hazards, the real-

time navigation AI system for vehicles must be integrated as part of a decision-making 

system, providing law enforcement agencies with critical information about road safety 

potential. It should enable proactive road closures and other security measures. 

7. Conclusion 

In this work, we explained that despite the advances in traditional techniques for the 

navigation of autonomous vehicles, the harsh and adverse climatic environment, particularly 

fog and snow, poses a serious threat to the practical utilization of these techniques. The need 

of the hour is to rely on the advantages posed by machine and deep learning to make 

navigation truly robust and reliable, instead of benchmarking traditional techniques, which 

do not provide any significant advancement in the existing state of the art, as established 

through experimental validation. This has been pursued in the essay. Secondly, a crucial 

requirement for applying machine and deep learning effectively to this domain is real-time 

identification of the inputs, as the environmental information, such as visibility, is extremely 

time-varying, and so are the sensed images and data. 

The switching from one model to another is based on the improvements in the accuracy of the 

environmental status that is estimated by the current deep learning model, as compared to 

the one identified in the immediate past. Both in fog and snow, the results verify that machine 

learning-based navigation enhances the state-of-the-art methods when applied to both 

adverse weather conditions, and the maximum identification time reported can be reduced 

by 98% if a small error in estimating the environmental conditions can be tolerated. Ray-based 

multi-feature learning enhances foggy and crisp image classification. The subsequent sections 

of the essay describe this extension in detail. In conclusion, scientific and technological 

awareness that is specifically designed to overcome navigation issues experienced while 

traveling on roads in adverse weather conditions is necessary to enhance the road travel 

experience. Furthermore, car manufacturers would increase the acceptability of present and 
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future vehicles because it is a universally acceptable fact that driver-assistance systems are 

preferred by car operators, especially long-haul professional drivers and the elderly. 
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