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1. Introduction 

Manufacturing is at the core of the U.S. economy. The long-term vitality of the manufacturing 

sector has a direct relationship with the vitality of the overall national economy. Rapid 

revitalization and improvement in the global competitiveness of the U.S. manufacturing 

sector are essential for sustainable economic recovery and growth. In recent years, the 

manufacturing industry has undergone dramatic changes due to rising competitive pressure, 

deregulation and offshoring, and advancing technology. The increasing capability of machine 

learning, artificial intelligence (AI), and automation technologies combined with the greater 

availability of machine data have created opportunities for smart and data-driven 

manufacturing systems. 

U.S. manufacturing operations are broadly classified into discrete and process. With high 

labor cost, safety concerns, and availability of machine data, the discrete manufacturing and 

machine shop operations need rapidly deployed AI-driven automation solutions for 

operation monitoring, decision-making, and workflow controls. Predictive maintenance is 

one of the most impactful automation applications with regards to return on investment 

(ROI). Manufacturing personnel need actionable AI-generated predictive alerts for 

understanding machine operation status and making better operational decisions. On the 

other hand, the design and deployment of effective intelligent solutions for predictive 

maintenance is challenging [1]. 

1.1. Background and Significance 

In the 1920s, a manufacturing machine lost an important bolt and fell out of production. It 

took a week to find a bolt that would fit. Since the 1940s, the United States manufacturing 

industry has been trying to create tools and add-ons that will track machine operation: 

temperature, time to failure, pressure, speed, etc. The idea was to be able to exchange those 
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measurements with other manufacturers or supplier companies on a city-wide scale [2]. It was 

believed that would allow machine inefficiencies to be spotted early and would allow more 

time to repair machines without interrupting production. In fact, nothing of this sort remained 

possible: there was no specification how those parameters should be exchanged, but mostly 

the problem was not the way of exchanging but that different manufacturers use different 

machines. Prior to the proliferation of the Internet of Things (IoT) and Artificial Intelligence 

(AI), it was not possible to combine those data from different manufacturers into some useful 

form and translating and extrapolating that data. 

The revolution started in the late 1990s and in the early 2000s Logica Film (now CGI) created 

the first telemetric system for German cars. That original date was going back on Ford 

introduction of moving assembly lines in the early 1910s. In the following decades, all 

respectable car manufacturers wanted to have such an implementation. Early 70s the car 

manufacturers finally realized that they have too many problems to fix everything inside and 

some problems are common (as for example finding out that all ribbed belts also remove metal 

shavings from car parts after first few km, etc). That is why many after war time assembly 

cars switched to a system from American car manufacturers with a set of fixed parameters 

that could be exchanged between them. 

1.2. Purpose and Scope of the Study 

AI-driven predictive maintenance (PdM) has gained momentum in the manufacturing 

industry over the past several years. The increasing competitiveness of U.S. manufacturing, 

rising costs, shrinking margins of manufacturers, pricing pressures imposed on suppliers, and 

mandates on equipment availability and sustainability are driving manufacturers to adopt 

new technologies to proactively maintain production equipment to achieve performance and 

sustainability goals. These trends intensify compliance mandates on manufacturers for 

equipment effluents, emissions, noise, etc., thereby increasing scrutiny and making 

prevalence and enforcement at multiple levels of the supply chain inevitable as indicated in 

the earlier mentioned developments in Europe [3]. Advances in the sensing suite, edge 

computing, cloud computing ecosystems, and data storage capacity and transmission speed 

have contributed toward making the data-pulling, computing, storage, and analytics 

sustainable and in real-time [2]. Concomitantly, the need for skilled personnel to field 

conventional management (DM)/automated management (AM) PdM strategies amidst 
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complaints of poor maintenance and reliability from shop-floor personnel is becoming 

widespread. As trained personnel are not accessible, AI-driven PdM tools offer the 

opportunity for manufacturers to bridge the knowledge-gap. The applicability of AI-driven 

PdM tools has been established in aerospace, transportation, power, machinery, etc. Since 

employability hinges on tool accuracy, screening based on the choice of ML algorithm(s), 

variables, and data characteristics is recommended. 

2. Fundamentals of Predictive Maintenance 

Predictive Maintenance (PdM) is a strategy for applying artificial intelligence and machine 

learning in manufacturing operations [4]. It entails collecting data and generating features that 

predict when a machine is about to fail. PdM uses these features and predictive models to 

warn maintenance engineers to schedule remedial action before a costly breakdown occurs. 

Thus, PdM can be seen as a digital twin of the asset or machine being monitored where past 

and present data related to the asset is analyzed in real-time to generate predictions about its 

future performance. PdM is composed of two core capabilities: (1) representation of the asset 

and its operating context to a level that makes it possible to anticipate failures, and (2) 

algorithms to apply this representation to historical or real time sensing data in a way that 

justifies predicted future outcomes [3]. 

There are two essential components enabling PdM: (1) a mathematical model that describes 

how the asset’s performance deteriorates over time (using condition monitoring data), and (2) 

an algorithm that adjusts this model based on measured condition data. At one extreme, this 

can be done using simple regression methods, at the other extreme complex physics-based 

nonlinear state observers (e.g., Kalman filters, particle filters, mode-dependent approaches, 

etc.) might be used. Traditional maintenance to PdM concepts is also compared. Maintenance 

policies can be broadly categorized into three main types: (1) corrective maintenance where 

remedial action is only taken after failure, (2) time-based preventive maintenance (TBPM) 

where an asset is serviced every n days (where n is some constant), and (3) condition-based 

maintenance (CBM) where the performance state of the asset is monitored and remedial action 

takes place when some threshold condition is reached. 

2.1. Definition and Concepts 
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The ascension of predictive maintenance (PdM) within intelligent prognostics and health 

management (PHM), boosted by advanced technology, such as the internet of things (IoT), 

big data, and artificial intelligence (AI) ushered a wave of growth in the manufacturing sector. 

This led to a heightened focus on the deployment and utilization of high-fidelity and 

redundant data coupled with clever analytics as essential ingredients for high-impact PdM 

[3]. Predictive maintenance is a form of maintenance that takes actions based on the 

estimations or predictions of the current and future states of objects as state indices (e.g., 

condition or health states) are obtained from inductive models via data from sensors 

(comfortingly) placed on the objects. More generally, it falls under the broad umbrella of 

condition-based maintenance (CBM) as vice versa, this refers to the set of maintenance 

techniques taking actions based on the “condition” of the object. 

PdM is increasingly popular as recent advances in low-cost/small/integrated and hence 

widely deployable sensors enabled data generation from almost everything "M" (machines, 

humans, structures, etc.) that, if cleverly interrogated, can provide insight into future states 

with rich context. There are key concepts associated with predictive maintenance, such as 

latent states, reducible latent states, health states, continuous health states, and discrete health 

states [4] are elucidated to create a better understanding of PdM as the underlying concept. 

2.2. Traditional vs. Predictive Maintenance 

Maintenance can be defined as a systematic process of preserving and maintaining equipment 

so that it continues to carry out its desired function, or the desired function continues to be 

carried out. Maintenance occupies a fundamental role in the ability of an organization to 

achieve its overall objectives [2]. Maintenance may be described in several ways as scheduled 

maintenance, unscheduled or breakdown maintenance, and predictive maintenance on-line 

or off-line process monitoring. Earlier a scheduled maintenance was used which was of two 

types: time-based and usage-based. The time-based maintenance system was universally 

adopted for all machines in a manufacturing industry irrespective of the age and condition of 

the machines. This was simple and easy to implement but had its limitations. Presently usage-

based maintenance system is preferred to time-based maintenance system. However, it is still 

very much akin to reactive maintenance since it is based on external influence factors, i.e. 

running hours or cycle count. Preventive maintenance was introduced as an alternative to the 

reactive maintenance approach, which ideally requires no equipment to Fail [4]. It assumes a 
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static equipment condition after maintenance. Preventive maintenance has now evolved into 

condition-based maintenance, incipient fault detection taking advantage of condition 

monitoring with built-in transducers and/or wear debris analysis. 

The maintenance activity has now evolved into a more advanced and complex strategy 

termed as, Predictive Maintenance. Here the predictive aspect is by using processed signals 

from on-line condition monitoring for on-line health assessment. It attempts to measure the 

actual performance of each machine, monitor it to ascertain the existing condition, and track 

its performance to assess any changes that would indicate degradation. A machine is then 

maintained only when the condition goes beyond an acceptable limit in order to prevent a 

fault from occurring or a failure. Thus the predictive maintenance system broadens the 

horizon of monitoring maintenance management. It considers both the condition of the 

process and the machine making predictions contingent not only on historical precedence but 

also on the real-time process data. The predictive maintenance presently being carried out on 

some machines with little or no condition monitoring depends only on past occurrence facts. 

3. AI Technologies in Predictive Maintenance 

As technologies continue to evolve, strategic improvements to operational and maintenance 

processes will need to emerge, too. Integrating artificial intelligence and machine learning 

within manufacturing and industrial systems will be critical to improving robustness and 

streamlined performance. Integrating surveillance and big data communications across 

operations enables the gathering of vital information on the condition of machines and 

product performance throughout the manufacturing process. By utilizing this information 

and applying AI-based deep learning algorithms, manufacturers can predict the likelihood of 

a block occurring, and understand the severity of the problem, whether it be a small 

improvement or complete failure [5]. Through strategic and reliable manufacturing, 

predictive maintenance can minimize costs, reduce wasted resources, cut emissions, boost 

quality, and create jobs. Strategies based on AI technologies can also create high-value 

products through careful control over the properties of material feedstock, advanced process 

design, and the manipulation of the manufacturing environment – approaches that are 

unfeasible without adequate intelligent systems [2]. 

AI technology in predictive maintenance encompasses a vast range of algorithms, from 

analytical to statistical methods, easy-to-use and accurate black-box solutions, as well as 

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd


Journal of AI-Assisted Scientific Discovery  
By Science Academic Press, USA  251 
 

 
Journal of AI-Assisted Scientific Discovery  

Volume 4 Issue 2 
Semi Annual Edition | July - Dec, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

explore machine, wind, uplink, and water food-condition analysis. The most established 

group of AI technologies applied to predictive maintenance are machine learning and deep 

learning algorithms, which require a relatively small number of historic time series sets for 

analysis. AI technologies based on laboratorial analyzes utilizing the deep learning method 

explore fault detection and fault source location of induction motors with the utilization of 

image signals of windings. AI, big data, and IoT positively affect predictive maintenance 

performance and operational efficiency in manufacturing, and can be used to track the 

machinery health level, original components condition, and quality of predictive maintenance 

strategies. 

3.1. Machine Learning Algorithms 

Machine learning algorithms play a key role in predictive maintenance (PdM) applications. 

They are used to analyze data collected from machines and identify patterns related to the 

health and performance of the system. Furthermore, machine learning algorithms are 

employed to build predictive models using the historical machine data, focusing on failures 

and degradation. In the manufacturing industry, where machinery is widely used, 

unexpected breakdowns can result in a huge loss of productivity, highlighting the importance 

of PdM [5]. 

Machine learning can provide the capability for PdM by addressing aspects such as data 

collection, health condition indicators, and condition assessment. About this, Wei C. Irgens et 

al., characterized machine learning as a secondary mechanism that adds knowledge to 

initially simple systems based on a self-learning and knowledge expansion process [6]. 

3.2. Deep Learning 

Deep learning can be defined as a subset of machine learning that enables the modeling of 

very deep neural networks. Deep learning models are capable of automatically extracting the 

most relevant features for a given task based on the analysis of the data used for this task, 

without the need for human intervention. This set of techniques, although based on neural 

networks, includes different types of architectures with different internal representations and 

modeling mechanisms. Convolutional neural networks (CNNs) and long short-term memory 

(LSTM) are two examples of state-of-the-art deep learning techniques widely used in the 

academic and industrial fields of predictive maintenance tasks [7]. These methods extract 
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relevant higher-level features through the combination of different sets of mathematical 

operations involving kernels, convolutions, and pooling functions that simulate how humans 

process information. The modeling mechanism involves a recurrent architecture based on 

feedback connections that dynamically modify the internal states of their activations while 

preserving the previous states' information. 

With the development of the industrial internet of things (IIoT), more advanced and cheaper 

sensors can be installed in equipment to monitor several variables (i.e., vibration, temperature, 

etc.) and analyze their temporal conditions over time. The data collected by the sensors 

covering mostly the same information (i.e., the monitoring of the same variable on the same 

machine) is commonly referred to as time series. Time series data represent one of the most 

frequent forms of data that can be acquired by sensors in the context of industrial applications 

and they can be used to improve the predictive capabilities of maintenance activities [5]. 

3.3. Natural Language Processing 

[2] 

Data-driven predictive maintenance methods dynamically assess the condition of a 

monitored node using data obtained in an ongoing fashion from sensors and other monitoring 

devices. A wide variety of Machine Learning and Artificial Intelligence techniques aim at 

early fault detection, diagnosis and prognosis based on an intelligent and automated analysis 

of the acquired raw data. Data-driven techniques can successfully accommodate nonlinearity, 

noised and multivariate data stream, but require complex software and hardware 

infrastructure [5]. 

4. Applications of AI-Driven Predictive Maintenance in Manufacturing 

With the adoption of the Industrial Internet of Things (IIoT) paradigm, industries have started 

investing heavily in research and design efforts on smart systems capable of improving 

operational efficiency, production, supply chain management and planning, logistics, and 

maintenance operations. A key aspect of these systems is predictive maintenance (PdM) that 

employs advanced analytics using sensors and other raw data to make predictions about 

future events associated with machinery part failures and quality issues. PdM allows for on-

time intervention actions based on predictions, hence avoiding substantial losses associated 

with machine downtimes and supply chain operation disruptions [2]. 
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Machine learning (ML) has drawn particular attention in the PdM context since it has the 

potential to uncover hidden patterns, dependencies, and interactions in raw unstructured, 

and often big, data. While traditionally the PdM methodology emphasizes the exploration of 

engineering data related to condition and symptoms such as vibration, temperature, pressure, 

and usage, the advent of elements of Industry 4.0 on the shop floor has led to considering the 

exploration of supplementary types of big data for prediction of failure in new areas. This 

includes exploration of big data records from management systems, e.g., ERP systems, MES 

systems, SCADA systems, as well as exploration of big data from social media such as Twitter 

[5]. 

4.1. Equipment Health Monitoring 

Equipment health monitoring enables the real-time monitoring and analysis of equipment 

conditions to facilitate proactive maintenance interventions. There are various advanced 

technologies for equipment health monitoring and analysis that support the development of 

industrial Internet of Things (IoT)-driven solutions, including vibration monitoring, thermal 

monitoring, acoustic monitoring, oil condition monitoring, and power consumption 

monitoring. Vibration monitoring is the most widely used technology for condition-based 

maintenance and can assess both rotating and reciprocating machinery. It is the most effective 

indicator of mechanical fault conditions that lead to changes in operating conditions. Thermal 

monitoring can predict and detect anomalies during operation by measuring temperature 

changes on the surface of machines and equipment. The goal of thermal monitoring is to 

detect abnormal thermal behavior across machines or system components. Acoustic 

monitoring can identify faults on production equipment before they reach critical failure by 

using low-cost commercial off-the-shelf devices to calculate fault indications from the 

acquired sound signals. These systems allow noise data to be mapped to equipment condition 

data. Oil condition monitoring is a form of condition monitoring that can be used to predict 

equipment failure before it occurs by analyzing the properties of lubricating oil. It can reveal 

the equipment condition from mechanical damage and wear, operating conditions, 

contamination levels, and overall cleanliness. Power consumption monitoring can evaluate 

the operation condition of production machines and identify equipment faults by analyzing 

their energy consumption profile [6]. The overall goal is not to eliminate failures, as in 

reliability-centered designs, but rather to preserve the health of equipment using automated 

diagnostic and prognostic technologies. PhD-program-investment centers this presentation 
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on equipment health monitoring focusing as it evolves in an AI-driven manner, all aspects, 

from technologies for data collection to modelling algorithms tailored for predictive 

maintenance (PdM) [2]. 

4.2. Anomaly Detection 

Anomaly detection is a technology that detects abnormal data patterns. Steadily monitored 

time series sensor data generated by material handling equipment or machinery is used to 

identify abnormal patterns. Anomaly detection aims to detect abnormal patterns generated 

by machines to identify potential issues. Time series sensor data generated by machines or 

material handling equipment is monitored actively in the manufacturing sector. Sensors are 

incorporated into machines and equipment to measure several physical quantities such as 

pressure, temperature, illuminance, force, humidity, acceleration, and voltage. Anomaly 

detection is an important area of analysis in signal research of a time series [7] ; [6]. 

Anomaly detection is performed proactively to minimize disruptions in operational 

processes. In the manufacturing industry, abnormalities generated by machines or equipment 

may halt the production process, resulting in financial loss such as increased operational costs. 

It is proven that even if machine or material handling equipment anomalies occur 

infrequently, there can be a high cost of production delay or failure. Therefore, detecting 

anomalies beforehand is important. Anomaly detection is classified as supervised learning 

and unsupervised learning. In the case of supervised learning, normal and abnormal events 

should be labeled accurately to build a model, which is often difficult in the field of 

manufacturing. For this reason, machine learning-based anomaly detection is widely studied 

as unsupervised learning. The condition of machines or material handling equipment is 

monitored by time series sensor data generated at constant time intervals. It is assumed in the 

proposed model that in the past period, the usual trend or condition of the system is given, 

and the model learns to detect the abnormal condition of the system. 

4.3. Failure Prediction 

A substantial portion of production losses can be traced back to unplanned production 

outages caused by equipment failures. AI-driven maintenance can proactively assess the 

condition of machines and predict failures. In doing so, it acts as a key enabler of preemptive 

and planned actions to head off costly downtimes and production interruptions [4]. 
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With the help of intelligent systems for failure prediction, companies can transition from a 

traditional and passive “repair when broken” approach, to a more cost-effective “predict and 

prevent” strategy [8]. Here, the remaining lifetime of machines and components is estimated 

based on condition measures. Additionally, indicators for impending components’ failure are 

identified from monitored parameters prior to breakdown. By establishing proactive 

measures, time and resources of service personnel can be allocated more efficiently. 

Components can be repaired or exchanged in less cost-intensive planned maintenance 

windows rather than during unplanned downtimes. 

5. Benefits and Challenges of Implementing AI-Driven Predictive Maintenance 

The key benefits of implementing AI-driven predictive maintenance for manufacturers 

include improving operational efficiency, achieving cost savings through more efficient 

maintenance scheduling, improving the quality and lifetime of machinery, and, in some cases, 

retrieving previously inaccessible functions in production machines. Even though some of 

these benefits can be achieved with conventional methods, the main profit drivers are seen in 

the increased availability of high-value machines and improving the overall quality in 

process-sensitive production [2]. AI-driven predictive maintenance systems typically use 

production data as their primary information source. This means that they can access a large 

amount of information on the current conditions of the production systems without the need 

for costly machinery upgrades or sensor installations. Automated methods for system 

analysis can be engineered to allow for an efficient analysis of the machines, even in large 

production plants with thousands of systems [9]. 

Manufacturers want to ensure that the benefits exceeding the costs can be clearly shown for 

these systems. This can be complicated, as many parameters and assumptions are typically 

involved in the calculations. Just as each manufacturing installation is unique, the 

implementation and systems are tailored to suit the specific needs of each manufacturer. Due 

to this variation, providing exact numbers before the implementation has commenced is 

virtually impossible. Another growing concern is the data privacy and security challenges 

associated with the use of cloud-based data storage and industrial data sharing. Utilizing 

cloud-based systems involves the readability of sensitive production data and the need for 

complete trust in the external service provider. Industrial data sharing strategies are still 
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attempting to develop a structure where sensitive and valuable data would be available for 

data-driven applications without giving away proprietary data. 

5.1. Operational Efficiency 

Manufacturing processes in different industries are increasingly using Artificial Intelligence 

(AI) driven Predictive Maintenance (PdM). The working condition analysis and maintenance 

scheduling of manufacturing machines are essential tasks on the shop floor. If the equipment 

is adequately monitored and scheduled for maintenance before failures, then the overall 

operational efficiency of the manufacturing process can be improved [1]. This can lead to 

improved productivity, reduced unplanned downtime, and less resource wastage, in terms of 

time and money, for both the manufacturers and the customers. AI-driven maintenance can 

have a positive effect on production operation performance, which includes OEE, 

productivity, throughput, and on-time delivery (OTD) [6]. Realizing the importance of AI-

driven PdM and its impact on operational performance, attempts are made to understand this 

for U.S. manufacturers. Several previous works have addressed the implementation of PdM 

with the help of AI. Current data-driven approaches, novel AI technologies, various 

applications, deep learning, and machine learning (ML) applications with Industrial Internet 

of Things (IIoT) in maintenance, use of AI in PdM for smart manufacturing, and attempts to 

reduce maintenance costs have been highlighted. 

5.2. Cost Savings 

Predictive maintenance (PdM) is the most financially rewarding initiative. It entails 

monitoring the condition and performance of critical assets to reduce unexpected failures and 

downtime. PdM focuses on a proactive and targeted maintenance strategy. This improves 

utilization, increases the lifetime of equipment, and eliminates unnecessary maintenance 

actions. An AI-based PdM is envisioned to automate the remaining useful lifetime prediction. 

By eliminating unforeseen breakdown/replacement and avoiding unnecessary maintenance, 

significant money can be saved [10]. 

At the production site, a particularly huge amount of cost-benefits can be generated. Having 

mechanical pumps as an example, breakdowns can lead to: (1) lost profits due to halted 

production, and (2) additional inner costs such as the emergency repair of equipment, 

overtime, or fines for non-compliance with delivery timelines. Siemens Cataract estimates a 
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daily damage of 200.000 dollars during a breakdown. This is only the tip of the iceberg. It is 

assumed that the second biggest cost drivers in a company after labor are maintenance 

expenditures. The total maintenance cost of a typical process industry is about 15 to 30% of 

the overall operating budget. On one side, the effort on predictive maintenance is to examine 

whether this expenditure is financially justified. Combined with appropriate business rules 

and organizational structures, these systems appear to be a silver bullet for “improved asset 

utilization” or productivity, despite the fact that capital investments in physical products can 

differ by an order of magnitude. On the other side, an existing predictive maintenance 

analytics model primarily focusing on chemical filtration systems is further enhanced and 

better adapted to be scalable [3]. 

5.3. Data Privacy and Security Concerns 

[6]. Such initiatives usually involve networked computer systems collecting sensitive data and 

transferring it between systems—from edge devices collecting data from machines to cloud 

or on-premise systems analyzing this data for maintenance purposes. This ongoing flow of 

sensitive data is highly susceptible to breaches. As mentioned by Molęda et al. [2] , well-

architected data protection measures that effectively safeguard sensitive information should 

be implemented whenever sensitive data is exposed to data breaches or misuses. Data 

protection measures include at-rest data protection mechanisms (e.g., encryption, 

tokenization, anonymization), during data transit protection mechanisms (e.g., encrypted 

protocols, data obfuscation), and data breach response strategies. The importance of 

addressing data security challenges in AI-driven maintenance initiatives has been 

highlighted. 

6. Case Studies and Success Stories 

The successful application of AI-driven predictive maintenance techniques and technologies 

are showcased through case studies and success stories. Based on the examination of the role 

of AI in predictive maintenance for the manufacturing industry in the United States, impact 

and expected benefits on overall manufacturing operations are presented, in addition to 

generally accepted standards for smart manufacturing and the application of AI-driven 

predictive maintenance. Global companies in the automotive and aerospace industries are 

specifically focused on, as they already exemplify successful implementation of AI-driven 

predictive maintenance. The companies were selected based on their long-term presence in 
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the industry and in manufacturing, and funding to develop smart manufacturing use cases 

through collaboration with the VA. 

Adjusted based on phases of AI-driven predictive maintenance implementation, success 

factors, performance metrics, and overall benefits, the case studies are further detailed to 

provide a roadmap for the deployment of AI-driven predictive maintenance techniques and 

technologies. Each presented case is followed by a brief executive summary highlighting key 

points. Case studies include Ford Motor Company, General Electric (GE) Aviation, and case 

study implementation sponsors, the State of Virginia and the Virginia Tech Institute for 

Critical Technology and Applied Science (ICTAS). Case study implementation partners 

include Research & Development Center for Advanced Manufacturing Technologies 

(RDCAMT), Institute for Critical Technology and Applied Science (ICTAS), Department of 

Industrial and Systems Engineering (ISE), and College of Engineering (COE) at Virginia Tech 

[5]. 

6.1. Automotive Industry 

The automotive industry has effectively leveraged AI-driven predictive maintenance to 

optimize manufacturing operations, enhance equipment reliability, and streamline 

maintenance processes. AI-based systems have been implemented in multiple vehicle models 

and manufacturing plants across North America, including in Mexico. In Ford’s Michigan 

Assembly Plant, the Thermal Spray process that applies a coating to transmission cases has 

been redesigned to leverage visual AI systems. In the production of the EcoBoost transmission 

within the plant, the assembly step was retrofitted with four cameras that monitor the sensors 

and actuators on the robotic arms while allowing the plant’s service team to predict 

equipment failures based on observed visual anomalies in machine setups and operations. 

General Motors has a comprehensive approach to mitigating equipment disruptions within 

the company’s powertrain assembly plants for the Chevrolet Malibu and Equinox across 

Canada, Mexico, and the United States. Leveraging existing manufacturing data on each 

plant’s high-volume transmission assembly, General Motors identified feasible AI-driven 

solutions to promote equipment reliability, lower maintenance costs, and minimize vehicle 

production losses. Additionally, two AI-based systems were rolled out to monitor the 

assembly manufacturing process and the equipment used to perform torque and leak tests on 

assembled transmissions. 
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6.2. Aerospace Industry 

Aerospace is a strategic industry with a rich heritage in the United States, producing 

approximately $150 billion in manufactured goods and $63 billion in exports. It is also the 

world’s foremost leader in advanced turbojet technology, business aviation markets, diesel 

engine production, commercial transport aircraft markets, and rotorcraft production. The 

aerospace industry captures a significant share of the total U.S. manufacturing output and 

makes up a large share of the total value added by manufacturing. The aerospace industry is 

a diverse and fragmented sector, with unequal bargaining power among the suppliers [2]. 

Safety, reliability, and performance of critical assets are fundamental concerns in the 

aerospace industry. Unscheduled failures can lead to catastrophic consequences in certain 

aerospace applications such as power generation, military micro air vehicles, and spacecraft. 

Predictive maintenance is currently of great interest to tackle such issues. It attempts to predict 

the time of failure of an asset based on its current condition, ideally scheduling the 

maintenance activity before this point, therefore preventing unexpected breakdowns. 

Traditional predictive maintenance approaches typically rely on either the design 

specifications of an asset or expensive and time-consuming tests to develop models that 

address its degradation. However, such approaches are rarely valid for real aerospace 

applications, where assets are subject to complex operating conditions [11]. 

7. Future Trends and Innovations in AI-Driven Predictive Maintenance 

Currently, the spotlight is placed on explainable AI, deterministic AI, and AI edge computing 

analytics hardware that directly connects to sensor and fault indicators. Explainable AI 

focuses on code that detects and corrects bias and non-objective data issues, in a manner 

understandable to users [2]. Deterministic AI employs observable laws and data to create 

output-generating models. Input data must be pre-analyzed to discover causal relationships 

and relevant factors, which are defined as thresholds that must be met. Edge integration uses 

an AI model that operates with input sensors to predict results before capital equipment or 

freight is sent to the cloud for further analysis. This system calculates decisions in seconds, 

considering various aspects, ratios, and forecasting methods of AI and deterministic 

techniques. Furthermore, edge AI models can monitor interactions with the environment 

using automated data filtering based on independence measures [5]. 
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Forecasting models cannot cope with the growing number of input time series because 

detection and prediction are based on different algorithms. This complexity leads to 

significant resource demand during inference and potential excessive operational costs. 

Therefore, novel approaches for simultaneous monitoring of single and multiple signals, AI 

fault detection models based on random variables on high-dimensional spaces, and compact 

AI models that are scalable across types and monitored systems are developed. New graphs 

monitor phrases of detected-fault indicators from the input time series, and together with 

compact graphs, they detect different types of faults or damage evolution within one model. 

7.1. Explainable AI 

[12]. By knowing and understanding why an outcome is reached, trust can be built around 

the application of an AI system. In predictive maintenance context, understanding the 

rationale of the component and the reasons that led the AI to predict an event, is crucial to the 

maintenance team. Furthermore, it allows constraints to be introduced to the system and it 

can deal with human intervention, such as dismissing a prediction made by the model, thus 

encouraging the model to rethink its choices [13]. 

7.2. Edge Computing 

The emergence of edge computing is advancing the potential of AI-driven predictive 

maintenance by enabling data to be processed and decisions made at the edge of the network. 

Older systems meant data-collected sensor information was gathered and transported back to 

a data centre and underwent processing, which resulted in a delay between information and 

action. With edge computing, some operational data process decisions can be handled at the 

edge of the network, nearer to the originating sensor, resulting in more real-time processing. 

As such, it is hypothesised that edge computing improves the agility and responsiveness of 

the maintenance system. 

Advances in the perception of smart monitoring conditions and the perception of 

misalignments and excessive vibrations of mechanical equipment are evaluated with 

considerations directed towards the way edges gather information from the surroundings. In 

the architecture proposed, edge infrastructures receive raw data from numerous sensors 

(from machines and devices) installed and convert them into an appropriate format. 

Afterwards, the edges deliver this formatted data through 5G-NR to an orchestration and 

https://scienceacadpress.com/
https://scienceacadpress.com/index.php/jaasd


Journal of AI-Assisted Scientific Discovery  
By Science Academic Press, USA  261 
 

 
Journal of AI-Assisted Scientific Discovery  

Volume 4 Issue 2 
Semi Annual Edition | July - Dec, 2024 

This work is licensed under CC BY-NC-SA 4.0. 

analytics server where data is stored in a time-scale database, and trained AI algorithms create 

analytics models responsible for inferencing new data and activating certain events [6] , [14]. 

As a result, AI inference takes place on edges for nearly real-time monitoring instead of 

classical methods adopted where pattern recognition and analytics are processed based on 

large amounts of stored data. 

8. Conclusion 

The role of AI-driven predictive maintenance in enhancing U.S. manufacturing operations has 

been examined through quotas including an introduction to the relevance of AI-driven 

predictive maintenance, discussions on existing barriers and challenges in the area due to low 

awareness and budgets and high complexity and integration issues, socio-technical solutions 

to engage the supply chain in the development and implementation of AI-driven predictive 

maintenance, and future work areas for academia, practitioners, and policy-makers. Several 

key findings from such discussions have been provided, along with their implications for U.S. 

manufacturing. The findings affirm the considerable promise of AI for augmenting traditional 

industry practices and achieving long-lasting improvements in performance. Yet, adopting 

AI requires substantial socio-technical investments in developing and refining new systems, 

mobilizing key actors internally and externally, and navigating ongoing tensions, ambiguities, 

and unexpected consequences stemming from the contested nature of such systems [15]. 

Consequently, the present research provides systematic guidance through six tiered areas: 

development, internal engagement, external engagement, implementation, sensing scope, 

and ongoing refinement, helping to address the most prevalent challenges of AI 

implementation. It demonstrates that AI should not only be seen as advanced technology 

solutions and backend tools but should also be framed within reconfiguring socio-technical 

systems offering tools, routines, and practices [1]. These systems need to engage actors from 

many stakeholders, not only the internal teams of companies, as addressing the skills gap and 

attracting new talent is highly dependent on domestic labor attractiveness. Solutions are 

therefore multifaceted and should involve public and private actors working together to 

educate, hire, and retain talent, especially in less developed regions. As AI-driven predictive 

maintenance systems grow ever more central to industrial production, further exploration is 

warranted on how such a shift affects the political landscape and considers stakeholder 

engagement and transparency. 
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8.1. Key Findings and Implications for U.S. Manufacturing 

The findings offer valuable insights into the state of AI-powered predictive maintenance tools 

for supply chain and logistics operations within U.S. manufacturing. There is a burgeoning 

interest in developing and deploying these solutions, driven by a convergence of 

technological advancements, the emergence of innovative startups, and a push for more 

resilient supply chains. However, there are significant roadblocks to widespread adoption, 

particularly among small and medium-sized manufacturers. For developers, there is an 

urgent need to prioritize accessibility, expand partnerships with logistics and IT solution 

providers, and address issues of trust and value alignment. For manufacturers, the focus 

should be on cultivating relationships with tool developers/providers, advocating for 

improved interoperability standards, investing in training and data initiatives, and fostering 

an organizational culture receptive to new technological solutions [15]. 

For U.S. manufacturing, the anticipated outcomes of wider deployment of AI-powered 

predictive maintenance tools in supply chains and logistics operations include greater 

competitive equity with larger firms and foreign competition, enhanced supply chain 

resilience, improved supplier relationships, and reduced pressure on public transportation 

systems. Overall, as manufacturers in the U.S. increasingly turn to AI solutions for improved 

operational efficiency, there is a clear opportunity for more widespread deployment of AI 

predictive maintenance solutions in logistics and supply chain operations. 
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